
Intro to ABC

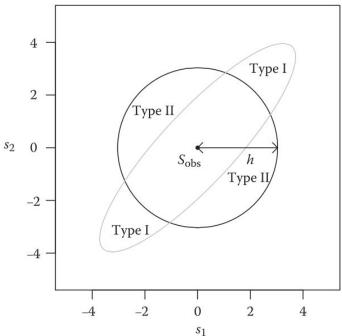
Likelihood-Free Rejection Sampling Algorithm

Inputs:

- A target posterior density $\pi(\theta|y_{obs}) \propto p(y_{obs}|\theta)\pi(\theta)$, consisting of a prior distribution $\pi(\theta)$ and a procedure for generating data under the model $p(y_{obs}|\theta)$.
- A proposal density $g(\theta)$, with $g(\theta) > 0$ if $\pi(\theta|y_{obs}) > 0$.
- An integer N > 0.

Sampling:

For i = 1, ..., N:

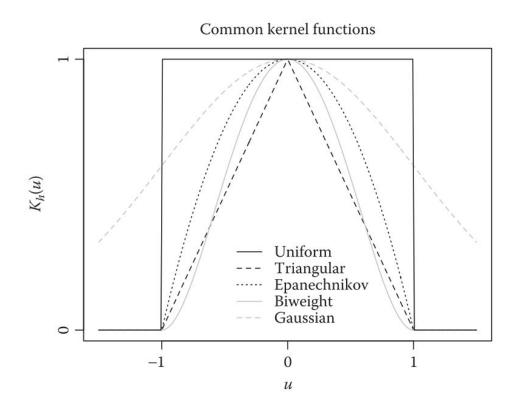

- 1. Generate $\theta^{(i)} \sim g(\theta)$ from sampling density g.
- 2. Generate $y \sim p(y|\theta^{(i)})$ from the likelihood.
- 3. If $y = y_{obs}$, then accept $\theta^{(i)}$ with probability $\frac{\pi(\theta^{(i)})}{Kg(\theta^{(i)})}$, where $K \ge \max_{\theta} \frac{\pi(\theta)}{g(\theta)}$. Else go to 1.

Output:

A set of parameter vectors $\theta^{(1)}, \ldots, \theta^{(N)}$ which are samples from $\pi(\theta|y_{obs})$.

Likelihood-Free Rejection Sampling Algorithm

3. If $||y - y_{obs}|| \le h$, then accept $\theta^{(i)}$ with probability $\frac{\pi(\theta^{(i)})}{Kg(\theta^{(i)})}$, where $K \ge \max_{\theta} \frac{\pi(\theta)}{g(\theta)}$.


Kernel functions instead of indicators

rejecting
$$\theta$$
 if $||y - y_{obs}|| \le h$

$$I(\|y - y_{obs}\| \le h)p(y|\theta)g(\theta)$$

As an alternative, use a kernel function:

$$K_h(u) = \frac{1}{h}K\left(\frac{u}{h}\right)$$
$$u = \|y - y_{obs}\|$$

Curse of dimensionality - Summary statistics

Sampling:

For $i = 1, \ldots, N$:

- 1. Generate $\theta^{(i)} \sim g(\theta)$ from sampling density g.
- 2. Generate $y \sim p(y|\theta^{(i)})$ from the likelihood.
- 3. Compute summary statistic s = S(y).
- 4. Accept $\theta^{(i)}$ with probability $\frac{K_h(\|s-s_{obs}\|)\pi(\theta^{(i)})}{Kg(\theta^{(i)})}$ where $K \geq K_h(0) \max_{\theta} \frac{\pi(\theta)}{g(\theta)}$. Else go to 1.

Output:

A set of parameter vectors $\theta^{(1)}, \ldots, \theta^{(N)} \sim \pi_{ABC}(\theta|s_{obs})$.

Summary questions:

- Choice of h and distance measure
- Choice of kernel
- Summary statistics
- Approximations due to other ABC techniques
- Sensitivity to prior
- Applications