The setting

m Nonlinear dynamical system: u(t) = ®.(u(0);0).

m Ecological model (Ricker map) as motivation: N; = rN,_qe~Ne-1+e—1,
er ~ N(0,02),

m Data observed y; ~ Pois(¢N;) so § = (r,02,¢). Call the full dataset y from here
on in.

m Likelihood is numerically horrific. How to infer 6 given data y?
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The basic idea

Log-likelihood poorly behaved — how to smooth the log-likelihood surface?
Know from central limit theorem: if {x1,x2,...,x,}, E[xi] = u, Var[x;] = 0?2, are
draws from some probability distribution then \/n (X, — i) — N(0, 0?).
Generalizes to multivariate setting as you would expect.

Now reduce y to s, a vector of summary statistics, and assume s ~ N (g, Xg).
Given a value of 6 we then generate a set of replicate datasets {yj,y3,...} and
corresponding summary statistics {s],s5,...}. Then we use these to compute the
log likelihood (to a constant)
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where [ig and 4 are each estimated from the replicates s7. This is a proxy for
assessing the likelihood of 6 through the summary statistics.
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Inference for 0

Use MCMC. Given a starting point 8% we proceed for each k

Generate 0* ~ g(Alk—1).
Compute a = exp(/s(6*) — /5(9["*1])
Set Ok = 6* w.p. «, otherwise 9K = glk—11,

Samples drawn from /g
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Case study

m Adult blowfly populations are given from the delay differential equation:

% = PN(t — 7)eNE=)/No _ 5N (1).

Discretized to give
Niy1 = Ry + Se,
where Ry ~ Pois(PN;_, exp(—N¢—/No)et), and S¢ ~ Binom(exp(—de;), Ny).
Stochastic terms e;, €; are Gamma random variables with unit means and
variances ag and 05.
m | have no idea how these come about.

m Parameters thus 0 = (P, No, 6, 7,0p,04).
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Results
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a, b, Two laboratory adult populations of sheep blowfly maintained under adult food limitation*>. ¢, d, As in a and b but maintained under moderate and
more severe juvenile food limitation*. e-h, Two replicates (one solid, one dashed) from the full model (equation (4)) fitted separately to the datashownin
each of panels a-d, immediately above. i-1, As in e-h for the model with demographic stochasticity only. The observations are made every second day.
The simulation phase is arbitrary. Notice the qualitatively good match of the dynamics (e-h) of the full model (equation (4)) to the data, relative to the
insufficiently variable dynamics of the model with demographic stochasticity only (i-1).
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Results
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Discussion

m Why no Bayes? Would make sense to incorporate prior knowledge in the model.
m How to choose summary statistics? This is given lengthy discussion in the SI.

m What do parameter estimates/sampling results look like? This is shown in the SI
but would be nice to see?
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