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Motivation

I When dealing with high-dimensional data yobs, ABC
algorithms use lower-dimensional summary statistics S(y)

I Simulated summaries S(y) are then compared to observed
S(yobs) to accept/reject the sample

I Lower dimensional representation → improved acceptance rate

I Optimal S(y) would be “minimal sufficient” statistics

I Often these are not available → resort to summary statistics
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Sufficiency

I Want to infer parameters θ from the data yobs

I Idea of sufficiency is to find statistics S(y) of the data that
summarise the information about θ

Definition (Bayes Sufficiency)

For any prior distribution of θ, the posterior density
f (θ|y ,S(y)) = f (θ|S(y))
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Sufficiency

Theorem (Fisher-Pitman-Koopman-Darmois)

With i.i.d. sampling from a model, exponential families are the
only models for which there are sufficient statistics whose
dimensions remain bounded as the sample size grows.

I This clearly presents a problem

I Most of the time when dealing with exponential family model,
we have access to a tractable likelihood → ABC not typically
required

I Need methods for selecting appropriate low dimensional
insufficient summaries
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Summary Statistic Selection Methods

Choice of S(y) will impact the efficiency and accuracy of ABC

First two methods rely on training data and candidate summary
statistics z = (z1, z2, . . . , zk) where each zi is a scalar function of
data y

I Subset selection

I Projection methods

I Auxiliary likelihood

Last method uses an approximating model to provide a more
tractable “auxiliary” likelihood to derive summary statistics from

All these approaches require subjective input from the user
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Example Data Features

Example data features used for Estimation of mutation rate
in coalescent simulation (Nunes and Balding, 2010).

Figure: Nunes and Balding, 2010



Example Data Features

Data features used for Random walk models (Barnes et al.
2012).

Figure: Barnes et al.



Subset Selection Methods

I Attempts to find a subset of z that produces a low
dimensional approximately sufficient set of statistics S ′

I Requires training data, simplest way is to sample (θ, y) pairs
by sampling θ from prior, then generating y

I Other methods such as using pilot ABC run with S(y) = z ,
and using accepted simulations as training data

I Approximate sufficiency, Entropy minimisation, Mutual
information maximisation

I Good for producing interpretable summaries - subset of
interpretable candidates z more interpretable than some
projection of z

I Problems include large computational expense, often ABC
must be run on all candidate subsets of z
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Projection Methods

I Want to find a low dimensional projection of z

I Partial Least Squares (PLS), Linear Regression, Boosting

I Also requires training data

I Less computationally expensive than subset selection methods

I Can use more candidate summaries because of this

I Wider search space of candidate summaries - linear/non-linear
combinations, not just subsets

I All methods apply to multi-dimensional θ
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Auxiliary Likelihood

I Need an approximate and tractable likelihood for the data

I Auxiliary likelihood pA(y |φ), auxiliary parameters φ don’t need
to correspond to generative parameters θ

I Maximum likelihood estimators, Likelihood distance, Scores

I No need for training data

I Subjective choice of this approximating model - may be
difficult/poorly approximating
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Choice of Auxiliary Model

I General model with tractable likelihood e.g. Gaussian Mixture

I Approximate the generative likelihood with tractable
alternative e.g. Composite likelihood

I Want small number of parameters to produce low-dimensional
summaries

I Hard to assess whether the auxiliary likelihood is producing
informative summaries for the generative model

Example
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Discussion

I Blum et al. (2013) - ‘What is very apparent from this study is
that there is no single “best” method of dimension reduction
for ABC.’

I With low k = dim(z), subset selection methods are
computationally feasible and perform best

I With high k, projection methods are favoured

I Chapter could have discussed the selection of data features z -
could initially better selection of z reduce the need for
complex and expensive summary selection?

I Is there any room for improving this initial selection of
features?

I No analysis of how these methods affect the accuracy of the
posterior approximation
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Other Approaches

I K2-ABC: Approximate Bayesian Computation with
Kernel Embeddings - Park et al., (2016)

- Circumvents need for selecting summary statistics - uses
MMD to give a dissimilarity measure between yobs and
simulated y

- Does need training data to learn the regression in RKHS

- Still need to pick the characteristic kernel, this is subjective

I Approximate Bayesian computation via the energy
statistic - Nguyen et al., (2020)
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Subset Selection Methods

I Approximate Sufficiency - Joyce and Marjoram, 2008

Candidate statistics randomly added, and are only accepted if
there is a great enough change in posterior approximation∣∣∣∣ π̂ABC(θ|S ′(yobs))

π̂ABC(θ|S(yobs))
− 1

∣∣∣∣ > T (θ)

Motivated by the definition of Bayesian sufficiency
Only for scalar θ

I Entropy Minimisation - Nunes and Balding, 2010
Complex two-step approach.
- Minimise estimate of ABC posterior entropy to pick SME,
retain nobs ‘best’ datasets for training
- Repeatedly run rejection-ABC, minimise the RMSE of
parameters compared to best datasets over subsets of z



Subset Selection Methods

I Approximate Sufficiency - Joyce and Marjoram, 2008
Candidate statistics randomly added, and are only accepted if
there is a great enough change in posterior approximation

∣∣∣∣ π̂ABC(θ|S ′(yobs))

π̂ABC(θ|S(yobs))
− 1

∣∣∣∣ > T (θ)

Motivated by the definition of Bayesian sufficiency
Only for scalar θ

I Entropy Minimisation - Nunes and Balding, 2010
Complex two-step approach.
- Minimise estimate of ABC posterior entropy to pick SME,
retain nobs ‘best’ datasets for training
- Repeatedly run rejection-ABC, minimise the RMSE of
parameters compared to best datasets over subsets of z



Subset Selection Methods

I Approximate Sufficiency - Joyce and Marjoram, 2008
Candidate statistics randomly added, and are only accepted if
there is a great enough change in posterior approximation∣∣∣∣ π̂ABC(θ|S ′(yobs))

π̂ABC(θ|S(yobs))
− 1

∣∣∣∣ > T (θ)

Motivated by the definition of Bayesian sufficiency
Only for scalar θ

I Entropy Minimisation - Nunes and Balding, 2010
Complex two-step approach.
- Minimise estimate of ABC posterior entropy to pick SME,
retain nobs ‘best’ datasets for training
- Repeatedly run rejection-ABC, minimise the RMSE of
parameters compared to best datasets over subsets of z



Subset Selection Methods

I Approximate Sufficiency - Joyce and Marjoram, 2008
Candidate statistics randomly added, and are only accepted if
there is a great enough change in posterior approximation∣∣∣∣ π̂ABC(θ|S ′(yobs))

π̂ABC(θ|S(yobs))
− 1

∣∣∣∣ > T (θ)

Motivated by the definition of Bayesian sufficiency

Only for scalar θ

I Entropy Minimisation - Nunes and Balding, 2010
Complex two-step approach.
- Minimise estimate of ABC posterior entropy to pick SME,
retain nobs ‘best’ datasets for training
- Repeatedly run rejection-ABC, minimise the RMSE of
parameters compared to best datasets over subsets of z



Subset Selection Methods

I Approximate Sufficiency - Joyce and Marjoram, 2008
Candidate statistics randomly added, and are only accepted if
there is a great enough change in posterior approximation∣∣∣∣ π̂ABC(θ|S ′(yobs))

π̂ABC(θ|S(yobs))
− 1

∣∣∣∣ > T (θ)

Motivated by the definition of Bayesian sufficiency
Only for scalar θ

I Entropy Minimisation - Nunes and Balding, 2010
Complex two-step approach.
- Minimise estimate of ABC posterior entropy to pick SME,
retain nobs ‘best’ datasets for training
- Repeatedly run rejection-ABC, minimise the RMSE of
parameters compared to best datasets over subsets of z



Subset Selection Methods

I Approximate Sufficiency - Joyce and Marjoram, 2008
Candidate statistics randomly added, and are only accepted if
there is a great enough change in posterior approximation∣∣∣∣ π̂ABC(θ|S ′(yobs))

π̂ABC(θ|S(yobs))
− 1

∣∣∣∣ > T (θ)

Motivated by the definition of Bayesian sufficiency
Only for scalar θ

I Entropy Minimisation - Nunes and Balding, 2010

Complex two-step approach.
- Minimise estimate of ABC posterior entropy to pick SME,
retain nobs ‘best’ datasets for training
- Repeatedly run rejection-ABC, minimise the RMSE of
parameters compared to best datasets over subsets of z



Subset Selection Methods

I Approximate Sufficiency - Joyce and Marjoram, 2008
Candidate statistics randomly added, and are only accepted if
there is a great enough change in posterior approximation∣∣∣∣ π̂ABC(θ|S ′(yobs))

π̂ABC(θ|S(yobs))
− 1

∣∣∣∣ > T (θ)

Motivated by the definition of Bayesian sufficiency
Only for scalar θ

I Entropy Minimisation - Nunes and Balding, 2010
Complex two-step approach.

- Minimise estimate of ABC posterior entropy to pick SME,
retain nobs ‘best’ datasets for training
- Repeatedly run rejection-ABC, minimise the RMSE of
parameters compared to best datasets over subsets of z



Subset Selection Methods

I Approximate Sufficiency - Joyce and Marjoram, 2008
Candidate statistics randomly added, and are only accepted if
there is a great enough change in posterior approximation∣∣∣∣ π̂ABC(θ|S ′(yobs))

π̂ABC(θ|S(yobs))
− 1

∣∣∣∣ > T (θ)

Motivated by the definition of Bayesian sufficiency
Only for scalar θ

I Entropy Minimisation - Nunes and Balding, 2010
Complex two-step approach.
- Minimise estimate of ABC posterior entropy to pick SME,
retain nobs ‘best’ datasets for training

- Repeatedly run rejection-ABC, minimise the RMSE of
parameters compared to best datasets over subsets of z



Subset Selection Methods

I Approximate Sufficiency - Joyce and Marjoram, 2008
Candidate statistics randomly added, and are only accepted if
there is a great enough change in posterior approximation∣∣∣∣ π̂ABC(θ|S ′(yobs))

π̂ABC(θ|S(yobs))
− 1

∣∣∣∣ > T (θ)

Motivated by the definition of Bayesian sufficiency
Only for scalar θ

I Entropy Minimisation - Nunes and Balding, 2010
Complex two-step approach.
- Minimise estimate of ABC posterior entropy to pick SME,
retain nobs ‘best’ datasets for training
- Repeatedly run rejection-ABC, minimise the RMSE of
parameters compared to best datasets over subsets of z



Subset Selection Methods

I Mutual Information Maximisation - Barnes et al., 2012

I (θ; S(y)) = I (θ; y) iif S(y) sufficient

- Add in zi that maximises estimated KL-divergence between
ABC posteriors

- Equivalent to minimising the expected entropy over y

Admits dim θ > 1

I Regularisation
- Local-linear regression model with response θ, and covariates
z , in the region of S(yobs)

- Use the AIC/BIC criterion to penalise complexity, and select
relevant data features

- Post-processing allows for samples ‖S(yobs)− S(y)‖ < h to
be adjusted based on the local-linear regression



Subset Selection Methods

I Mutual Information Maximisation - Barnes et al., 2012
I (θ; S(y)) = I (θ; y) iif S(y) sufficient

- Add in zi that maximises estimated KL-divergence between
ABC posteriors

- Equivalent to minimising the expected entropy over y

Admits dim θ > 1

I Regularisation
- Local-linear regression model with response θ, and covariates
z , in the region of S(yobs)

- Use the AIC/BIC criterion to penalise complexity, and select
relevant data features

- Post-processing allows for samples ‖S(yobs)− S(y)‖ < h to
be adjusted based on the local-linear regression



Subset Selection Methods

I Mutual Information Maximisation - Barnes et al., 2012
I (θ; S(y)) = I (θ; y) iif S(y) sufficient

- Add in zi that maximises estimated KL-divergence between
ABC posteriors

- Equivalent to minimising the expected entropy over y

Admits dim θ > 1

I Regularisation
- Local-linear regression model with response θ, and covariates
z , in the region of S(yobs)

- Use the AIC/BIC criterion to penalise complexity, and select
relevant data features

- Post-processing allows for samples ‖S(yobs)− S(y)‖ < h to
be adjusted based on the local-linear regression



Subset Selection Methods

I Mutual Information Maximisation - Barnes et al., 2012
I (θ; S(y)) = I (θ; y) iif S(y) sufficient

- Add in zi that maximises estimated KL-divergence between
ABC posteriors

- Equivalent to minimising the expected entropy over y

Admits dim θ > 1

I Regularisation
- Local-linear regression model with response θ, and covariates
z , in the region of S(yobs)

- Use the AIC/BIC criterion to penalise complexity, and select
relevant data features

- Post-processing allows for samples ‖S(yobs)− S(y)‖ < h to
be adjusted based on the local-linear regression



Subset Selection Methods

I Mutual Information Maximisation - Barnes et al., 2012
I (θ; S(y)) = I (θ; y) iif S(y) sufficient

- Add in zi that maximises estimated KL-divergence between
ABC posteriors

- Equivalent to minimising the expected entropy over y

Admits dim θ > 1

I Regularisation
- Local-linear regression model with response θ, and covariates
z , in the region of S(yobs)

- Use the AIC/BIC criterion to penalise complexity, and select
relevant data features

- Post-processing allows for samples ‖S(yobs)− S(y)‖ < h to
be adjusted based on the local-linear regression



Subset Selection Methods

I Mutual Information Maximisation - Barnes et al., 2012
I (θ; S(y)) = I (θ; y) iif S(y) sufficient

- Add in zi that maximises estimated KL-divergence between
ABC posteriors

- Equivalent to minimising the expected entropy over y

Admits dim θ > 1

I Regularisation

- Local-linear regression model with response θ, and covariates
z , in the region of S(yobs)

- Use the AIC/BIC criterion to penalise complexity, and select
relevant data features

- Post-processing allows for samples ‖S(yobs)− S(y)‖ < h to
be adjusted based on the local-linear regression



Subset Selection Methods

I Mutual Information Maximisation - Barnes et al., 2012
I (θ; S(y)) = I (θ; y) iif S(y) sufficient

- Add in zi that maximises estimated KL-divergence between
ABC posteriors

- Equivalent to minimising the expected entropy over y

Admits dim θ > 1

I Regularisation
- Local-linear regression model with response θ, and covariates
z , in the region of S(yobs)

- Use the AIC/BIC criterion to penalise complexity, and select
relevant data features

- Post-processing allows for samples ‖S(yobs)− S(y)‖ < h to
be adjusted based on the local-linear regression



Subset Selection Methods

I Mutual Information Maximisation - Barnes et al., 2012
I (θ; S(y)) = I (θ; y) iif S(y) sufficient

- Add in zi that maximises estimated KL-divergence between
ABC posteriors

- Equivalent to minimising the expected entropy over y

Admits dim θ > 1

I Regularisation
- Local-linear regression model with response θ, and covariates
z , in the region of S(yobs)

- Use the AIC/BIC criterion to penalise complexity, and select
relevant data features

- Post-processing allows for samples ‖S(yobs)− S(y)‖ < h to
be adjusted based on the local-linear regression



Subset Selection Methods

I Mutual Information Maximisation - Barnes et al., 2012
I (θ; S(y)) = I (θ; y) iif S(y) sufficient

- Add in zi that maximises estimated KL-divergence between
ABC posteriors

- Equivalent to minimising the expected entropy over y

Admits dim θ > 1

I Regularisation
- Local-linear regression model with response θ, and covariates
z , in the region of S(yobs)

- Use the AIC/BIC criterion to penalise complexity, and select
relevant data features

- Post-processing allows for samples ‖S(yobs)− S(y)‖ < h to
be adjusted based on the local-linear regression





Projection Methods

I Partial Least Squares - Wegmann et al., 2009

- ith PLS component ui = αT
i z maximises

∑p
j=1 Cov(ui , θj)

2,
s.t. Cov(ui , uj) = 0 for j < i . Also normalisation constraint
αT
i αi = 1

- Produces linear combinations of z that have high covariance
with θ, and are uncorrelated with each other

- Pick the c first components as summary statistics, to reduce
the dimension (they use a cross-validation procedure to select
c)

I Linear Regression - Fearnhead and Prangle, 2012

- Fit linear model to training data, θ ∼ N (Az + b,Σ)

- Motivated by S(y) = E [θ|y ] being optimal choice of S to
minimise quadratic loss of parameter means in the target
distribution π(θ|S(yobs)) when h = 0
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I Boosting - Aeschbacher et al., 2012

- Non-linear regression method, uses training data and
outputs predictors θ̂(y) of E(θ|y), which are used as summary
statistics

- Generates an ensemble of weak learners to construct a
strong learner
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