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When dealing with high-dimensional data y,,s, ABC
algorithms use lower-dimensional summary statistics S(y)

Simulated summaries S(y) are then compared to observed
S(yobs) to accept/reject the sample

Lower dimensional representation — improved acceptance rate
Optimal S(y) would be "minimal sufficient” statistics

Often these are not available — resort to summary statistics
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Sufficiency

» Want to infer parameters 6 from the data yops

> |dea of sufficiency is to find statistics S(y) of the data that
summarise the information about 6

Definition (Bayes Sufficiency)

For any prior distribution of #, the posterior density
f(0ly, S(y)) = £(015(y))
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Sufficiency

Theorem (Fisher-Pitman-Koopman-Darmois)

With i.i.d. sampling from a model, exponential families are the
only models for which there are sufficient statistics whose
dimensions remain bounded as the sample size grows.

» This clearly presents a problem

» Most of the time when dealing with exponential family model,
we have access to a tractable likelihood — ABC not typically
required

» Need methods for selecting appropriate low dimensional
insufficient summaries



Summary Statistic Selection Methods



Summary Statistic Selection Methods

Choice of S(y) will impact the efficiency and accuracy of ABC



Summary Statistic Selection Methods

Choice of S(y) will impact the efficiency and accuracy of ABC

First two methods rely on training data and candidate summary
statistics z = (z1, 22, . . ., Zx) where each z; is a scalar function of
data y

» Subset selection

» Projection methods



Summary Statistic Selection Methods

Choice of S(y) will impact the efficiency and accuracy of ABC

First two methods rely on training data and candidate summary
statistics z = (z1, 22, . . ., Zx) where each z; is a scalar function of
data y

» Subset selection
» Projection methods
» Auxiliary likelihood

Last method uses an approximating model to provide a more
tractable “auxiliary” likelihood to derive summary statistics from



Summary Statistic Selection Methods

Choice of S(y) will impact the efficiency and accuracy of ABC

First two methods rely on training data and candidate summary
statistics z = (z1, 22, . . ., Zx) where each z; is a scalar function of
data y

» Subset selection
» Projection methods
» Auxiliary likelihood

Last method uses an approximating model to provide a more
tractable “auxiliary” likelihood to derive summary statistics from

All these approaches require subjective input from the user



Example Data Features

Example data features used for Estimation of mutation rate
in coalescent simulation (Nunes and Balding, 2010).

Table 1: The pool of summary statistics { considered for summarising datasets of
DNA sequence haplotypes in the simulation study. For each statistic, we show the
number of observed datasets (out of 100) for which it was included in the optimal
set in univariate, unadjusted ABC inference by the methods described in the text.

Selected for 7 (%)

Selected for p (%)

Statistic Description AS ME 2-stage AS ME 2-stage
[e]) no. of segregating sites . 67 100 73 67 97
Cs Uniform|0,25] random variable 4 3 0 2 5 0
Cy mean no. of differences over all pairs of haplotypes 27 54 25 52 30 19
Cy 25%(mean 2 across pairs separated by < 10%

of the simulated genomic region) 56 35 50 35 59 78
Cy no. of distinet haplotypes 43 19 20 78 73 100
Cy frequency of the most common haplotype 36 20 1 11 23 2
'y no. of singleton haplotypes 16 14 5 16 31 5

Figure: Nunes and Balding, 2010



Example Data Features

Data features used for Random walk models (Barnes et al.
2012).

S1 Mean square displacement.

S2 Mean x and y displacement.

S3 Mean square x and y displacement.

S4 Straightness index.

S5 Eigenvalues of gyration tensor (reference random walks
book).

Applying our summary statistic selection framework
to data simulated from the three different models over 100

Figure: Barnes et al.
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Subset Selection Methods

» Attempts to find a subset of z that produces a low
dimensional approximately sufficient set of statistics S’

» Requires training data, simplest way is to sample (6, y) pairs
by sampling 6 from prior, then generating y

» Other methods such as using pilot ABC run with S(y) = z,
and using accepted simulations as training data

» Approximate sufficiency, Entropy minimisation, Mutual
information maximisation

» Good for producing interpretable summaries - subset of

interpretable candidates z more interpretable than some
projection of z

» Problems include large computational expense, often ABC
must be run on all candidate subsets of z
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Projection Methods
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Want to find a low dimensional projection of z

Partial Least Squares (PLS), Linear Regression, Boosting
Also requires training data

Less computationally expensive than subset selection methods
Can use more candidate summaries because of this

Wider search space of candidate summaries - linear/non-linear
combinations, not just subsets

All methods apply to multi-dimensional 6
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Auxiliary Likelihood

v

Need an approximate and tractable likelihood for the data

Auxiliary likelihood pa(y|¢), auxiliary parameters ¢ don't need
to correspond to generative parameters 6

Maximum likelihood estimators, Likelihood distance, Scores
No need for training data

Subjective choice of this approximating model - may be
difficult/poorly approximating
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Choice of Auxiliary Model

» General model with tractable likelihood e.g. Gaussian Mixture

P> Approximate the generative likelihood with tractable

alternative e.g. Composite likelihood

» Want small number of parameters to produce low-dimensional

summaries

» Hard to assess whether the auxiliary likelihood is producing

informative summaries for the generative model

Example

4.1. The structural model: An Ornstein-Uhlenbeck type stochastic
volatility model

Our structural model M is defined in terms of the following two stochastic differential equa-

tions:

da*(t) = (u+ Bo’(t))dt +o(t) dW(t) (4.1)
da®(t) = =Ao*(t)dt +d Z(At). (4.2)

Here we denote with (2*(t)),5, the log price process of an asset, (W(t)),s, is a standard
Brownian motion and (0%(t)),s, is the underlying latent instantancous volatility process of

OU type, independent of (W (t)),5q, with (Z(At)),., being the background driving Lévy process
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Discussion

» Blum et al. (2013) - ‘What is very apparent from this study is
that there is no single “best” method of dimension reduction
for ABC.’

» With low k = dim(z), subset selection methods are
computationally feasible and perform best
> With high k, projection methods are favoured

» Chapter could have discussed the selection of data features z -
could initially better selection of z reduce the need for
complex and expensive summary selection?

» Is there any room for improving this initial selection of
features?

» No analysis of how these methods affect the accuracy of the
posterior approximation
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Other Approaches

> K2-ABC: Approximate Bayesian Computation with
Kernel Embeddings - Park et al., (2016)

- Circumvents need for selecting summary statistics - uses
MMD to give a dissimilarity measure between y,ps and
simulated y

- Does need training data to learn the regression in RKHS

- Still need to pick the characteristic kernel, this is subjective

> Approximate Bayesian computation via the energy
statistic - Nguyen et al., (2020)
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Subset Selection Methods

> Approximate Sufficiency - Joyce and Marjoram, 2008
Candidate statistics randomly added, and are only accepted if
there is a great enough change in posterior approximation

7ABC(0]S"(Vobs))
7aBC(01S(Yobs))

Motivated by the definition of Bayesian sufficiency
Only for scalar 6

—1| > T(0)

» Entropy Minimisation - Nunes and Balding, 2010
Complex two-step approach.
- Minimise estimate of ABC posterior entropy to pick Syg,
retain ngps ‘best’ datasets for training
- Repeatedly run rejection-ABC, minimise the RMSE of
parameters compared to best datasets over subsets of z
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Subset Selection Methods

» Mutual Information Maximisation - Barnes et al., 2012
1(6; S(y)) = 1(6; y) iif S(y) sufficient

- Add in z; that maximises estimated K L-divergence between
ABC posteriors

- Equivalent to minimising the expected entropy over y

» Regularisation
- Local-linear regression model with response 8, and covariates

z, in the region of S(Yobs)

- Use the AIC/BIC criterion to penalise complexity, and select
relevant data features

- Post-processing allows for samples ||S(yobs) — S(y)|| < h to
be adjusted based on the local-linear regression



Further refinements - regression

Beaumont, Zhang and Balding, 2002, Blum, 2010, Blum and Frangois, 2010

Location model: y~N(6,1), 6~N(0,1)
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Projection Methods

» Boosting - Aeschbacher et al., 2012

- Non-linear regression method, uses training data and
outputs predictors 6(y) of E(f|y), which are used as summary
statistics

- Generates an ensemble of weak learners to construct a
strong learner



