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» Task: Calibration of computer model simulator.
» Challenge 1: Finite computational resources. intreduction
» Challenge 2: Computationally intensive simulation.

> Example: Complex climate modelling - Why?
1. High-dimensional outputs;
2. Model component coupling;
3. High spatial resolution.

temperature precipitation latitude longitude

X reference_time
.

Figure: Data structure xarray visualisation for 2 state variables!.

Image obtained from here.
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https://towardsdatascience.com/handling-netcdf-files-using-xarray-for-absolute-beginners-111a8ab4463f
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Introduction

» We have access to observations Cgps.

P Treat climate simulator as a black box mapping
f:© — C with 1(0) = Csim.

» Parameter posterior becomes

7(01Cote) o 7(6) [ 7(ColCam)  7(Canl6)  dCa
~ ) ————  ~——
prior stats model simulator likelihood
Challenges

1. Can run simulator N times to get {H(i),Cgr)n N, -
cannot run MCMC for small N.

2. Simulator-reality discrepancy can be large - prior
specification difficulty.
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Strategles ABC for climate

Yannis Zachos

Introduction

1. Make the most out of N simulator runs through careful
experimental design:

1.1 Space-filling domain sampling e.g. Maximin Latin
Hypercube (MLH).
1.2 Entropy-minimising domain sampling.

2. Reduce parameter space through History matching
(HM) or ABC;

3. Approximate simulator with a cheap surrogate model
(meta-model) called an emulator.
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Role of ABC

» Replace statistics model 7(Cops|Csim) with acceptance
kernel I(p(Cops, Csim) < €).

» This induces a uniform distribution on the simulator
discrepancy - not good but pragmatic choice?

» (Kennedy and O'Hagan 2001) fitted a stationary
Gaussian process to the model discrepancy term.

» Can tune p, € to get desired acceptance rate.

ABC for climate
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History matching
and ABC
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History matching

» Intuition: Rule out regions of © that yield implausible
Csim relative to C,ps after accounting for model
discrepancy.

» Task: For a set of plausible climate states P¢ find
Py :={0€0O:f(0) <€ P}

» For deterministic f (as in climate), Py = () implies there
are no plausible states - poor model.

» For stochastic f, Py # () as the plausibility-implausibility
boundary is soft - same for MCMC.

» Cannot obtain all of Py - even partial description is
useful.

ABC for climate
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Comparison between History matching and ABC

A\

I(p(Cops, Csim) < €) = 0 implies that 6 is implausible.
They both don't use a detailed discrepancy model.

ABC provides a soft plausibility boundary whereas HM
provides a hard one.

In ABC we select summary statistics on the basis of
what is informative of 6.

In HM outputs that are informative of # may have large
discrepancies, which can lead to type | errors.

ABC for climate
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Simulator emulation

vVvyyvyy

A\

Derive cheap approximation £(8) to f(6).
Emulator is built based on D := {6;, f(6;)} ;.
Gaussian processes are great emulators! Why?

Non-stationary GP kernels (treed GPs) can provide
flexible emulators for all of ©, multi-task GPs ...

It is critical to discriminate between 6 € Py and 6 ¢ Py
even if f is a poor model.
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Simulator
emulation
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Sequential history matching

» How do we learn complex Py?
1. A priori start with P RCY

2. Choose design D ={0;c0O: ,-..,n1} and run
the simulator to get ensemble

DO = {(6;, G)) = £(6;) : 6; € DV}
3. Build emulator f and use it to predict 739 )
4. DITTO for D((f), D( ), 7@, %) and so on...
» () can be built for 6 € Péi_l) instead of # € © to
reduce f-variability.
» Greedy approach - no way to backtrack.

» Trade-off between optimatility and efficiency. When to
explore/exploit?
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Sequential history
matching
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Experimental design

Approach 1
» For exploration of entire © or Péi) we can use space
filling designs e.g. Maximin Latin Hypercube (MLH).
» MLH generates near-random samples from a
multidimensional distribution of 6.
Approach 2
» Select a new design point that minimises the entropy of
parameter regions we are uncertain about.
» This is equivalent to maximising new information or
maximally reducing emulator uncertainty.
» Formally add 6 = arg miny E [I:I|D(i_1) U {6i}] to the
design, where
H: average entropy of the emulator prediction of the
plausibility space.

ABC for climate

Yannis Zachos

Experimental
design
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Plausibility criteria

» Example 1: (Williamson et al. 2013) used
Py ={0 € ©:|Z(0)] < a} with

_ |Gons — E[f(9)]]
H= VVar (Cops — E[F(O)])

» Criteria can become progressively more stringent, slowly
approaching the final desired criterion P((:W)

> Keep track of [P} — Pé“’ to avoid type-l errors and
relax criteria if necessary.

» What about deciding plausibility of regions where
emulator is uncertain?

» Example 2: Plausibility criterion is D_ < f(0) < D;..

» For GP emulators, wa(ug, Y ) and therefore
Pz(§ € Py) is available in closed form.

ABC for climate

Yannis Zachos

Experimental
design
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Application la
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FIGURE 19.1

(a) Accepted samples from the rejection ABC algorithm after 100 (light grey)
and 1,000 (dark grey) simulator evaluations. (b and c¢) The estimated plausible
region using an emulator trained with a maximin Latin hypercube design
(points shown in grey) with 10 (middle) and 30 (right) simulator evaluations.
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Application Ib

Emulator entropic design n =4

Emulator entropic design # = 10
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FIGURE 19.2
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Results from using an entropy based sequential design. The left-hand column
shows the estimated response surface (contours) and P( € Py) (shading), with
the design points overlaid. The large dark grey point is the most recently added
point. The right-hand column shows the entropy surface. The top row uses
four simulator evaluations, and the bottom row uses ten simulator evaluations,

all added according to the entropy criterion.
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» dim @ = 24, 8 plausibility metrics/model outputs.
> npMLH = 500 (4 pIausibIe), Nepps — 885 (471 pIausibIe).
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FIGURE 19.3
Cross-sections of ocean alkalinity through the Atlantic (25°W) and Pacific (155°W) Oceans. The figure compares the mean
of the training MLH ensemble (a) and the plausibility filtered EFPC ensemble (b) with observations (c).
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Discussion

» Is ABC really necessary in this type of modelling? Can
we use a better model for 7(Cops|Csim)?

> |s there a way to efficiently backtrack in SHM?

» Are there more robust plausibility criteria?
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