Sequential Monte Carlo without likelihoods

November 23, 2020

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- < ロ > < 回 > < 三 > < 三 > < 三 > の < の

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- Prior $\pi(\theta)$
- Likelihood $\pi(y|\theta) = ?$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Observed data y_{obs}

- Prior $\pi(\theta)$
- Likelihood $\pi(y|\theta) = ?$
- Observed data y_{obs}
- We can't find the posterior $\pi(\theta|y_{obs}) \propto \pi(\theta)\pi(y_{obs}|\theta) = ?$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Prior $\pi(\theta)$
- Likelihood $\pi(y|\theta) = ?$
- Observed data y_{obs}
- We can't find the posterior $\pi(\theta|y_{obs}) \propto \pi(\theta)\pi(y_{obs}|\theta) = ?$

► Instead find the approximate posterior $\pi_{\epsilon}(\theta|y_{\text{obs}}) \propto \pi(\theta) \int \pi(y|\theta) K_{\epsilon}(\rho(S(y), S(y_{\text{obs}}))) dy$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Prior $\pi(\theta)$
- Likelihood $\pi(y|\theta) = ?$
- Observed data y_{obs}
- We can't find the posterior $\pi(\theta|y_{obs}) \propto \pi(\theta)\pi(y_{obs}|\theta) = ?$

► Instead find the approximate posterior $\pi_{\epsilon}(\theta|y_{\text{obs}}) \propto \pi(\theta) \int \pi(y|\theta) K_{\epsilon}(\rho(S(y), S(y_{\text{obs}}))) dy$

 $\pi_{\epsilon}(heta, y | y_{\mathsf{obs}}) \propto \pi(heta) \pi(y | heta) \mathcal{K}_{\epsilon}(
ho(\mathcal{S}(y), \mathcal{S}(y_{\mathsf{obs}})))$

- ロ ト - 4 回 ト - 4 □

ABC Rejection sampling

• We want to sample from $f(\theta, y) = \pi_{\epsilon}(\theta, y | y_{obs}) \propto \pi(\theta) \pi(y | \theta) \mathcal{K}_{\epsilon}(\rho(S(y), S(y_{obs})))$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

ABC Rejection sampling

We want to sample from
 f(θ, y) = π_ε(θ, y|y_{obs}) ∝ π(θ)π(y|θ)K_ε(ρ(S(y), S(y_{obs})))

 We can sample from
 g(θ, y) ∝ *g*(θ)π(y|θ)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

ABC Rejection sampling

We want to sample from
 f(θ, y) = π_ϵ(θ, y|y_{obs}) ∝ π(θ)π(y|θ)K_ϵ(ρ(S(y), S(y_{obs})))

 We can sample from

$$g(heta, y) \propto g(heta) \pi(y| heta)$$

Sampling: For $i = 1, \ldots, N$:

- 1. Generate $\theta^{(i)} \sim g(\theta)$ from sampling density g.
- 2. Generate $y^{(i)} \sim p(y|\theta^{(i)})$ from the model.
- 3. Compute summary statistic $s^{(i)} = S(y^{(i)})$.
- 4. Accept $\theta^{(i)}$ with probability $\frac{K_h(\|\|s^{(i)}-s_{obs}\|\|)\pi(\theta^{(i)})}{M_g(\theta^{(i)})}$ where $M \ge K_h(0) \max_{\theta} \frac{\pi(\theta)}{g(\theta)}$. Else go to 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Output:

A set of parameter vectors $\theta^{(1)}, \ldots, \theta^{(N)} \sim \pi_{ABC}(\theta|s_{obs}).$

ABC MCMC

▶ We want to sample from

 $f(\theta, y) = \pi_{\epsilon}(\theta, y | y_{\mathsf{obs}}) \propto \pi(\theta) \pi(y | \theta) \mathcal{K}_{\epsilon}(\rho(\mathcal{S}(y), \mathcal{S}(y_{\mathsf{obs}})))$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

ABC MCMC

We want to sample from

 $f(\theta, y) = \pi_{\epsilon}(\theta, y | y_{\mathsf{obs}}) \propto \pi(\theta) \pi(y | \theta) \mathcal{K}_{\epsilon}(\rho(\mathcal{S}(y), \mathcal{S}(y_{\mathsf{obs}})))$

When the proposal distribution is

 $q((heta',y')|(heta,y)) \propto q(heta'| heta)\pi(y'| heta')$

the likelihoods cancel in the MH ratio.

Sampling: For $i = 1, \ldots, N$:

- 1. Generate candidate vector $\theta' \sim g(\theta^{(i-1)}, \theta)$ from the proposal density g.
- 2. Generate $y' \sim p(y|\theta')$ from the model and compute summary statistics s' = S(y').
- 3. With probability:0

$$\min\left\{1, \frac{K_h(\|s'-s_{obs}\|)\pi(\theta')g(\theta', \theta^{(i-1)})}{K_h(\|s^{(i-1)}-s_{obs}\|)\pi(\theta^{(i-1)})g(\theta^{(i-1)}, \theta')}\right\}$$

set $(\theta^{(i)}, s^{(i)}) = (\theta', s')$. Otherwise set $(\theta^{(i)}, s^{(i)}) = (\theta^{(i-1)}, s^{(i-1)})$.

Output:

A set of correlated parameter vectors $\theta^{(1)}, \ldots, \theta^{(N)}$ from a Markov chain with stationary distribution $\pi_{ABC}(\theta|s_{obs})$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Prior $\pi(\theta) \sim U[-10, 10]$

- Prior $\pi(\theta) \sim U[-10, 10]$
- Likelihood $\pi(y|\theta) = \frac{1}{2}\mathcal{N}(y;\theta,1) + \frac{1}{2}\mathcal{N}(y;\theta,\frac{1}{100})$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Prior $\pi(\theta) \sim U[-10, 10]$
- Likelihood $\pi(y|\theta) = \frac{1}{2}\mathcal{N}(y;\theta,1) + \frac{1}{2}\mathcal{N}(y;\theta,\frac{1}{100})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Observed data $y_{obs} = 0$

• Prior $\pi(\theta) \sim U[-10, 10]$

- Likelihood $\pi(y|\theta) = \frac{1}{2}\mathcal{N}(y;\theta,1) + \frac{1}{2}\mathcal{N}(y;\theta,\frac{1}{100})$
- Observed data y_{obs} = 0
- Posterior

 $\pi(heta|y_{\mathsf{obs}}) \propto \mathbb{1}_{[-10,10]}(heta) imes \left(rac{1}{2} \mathcal{N}(heta;0,1) + rac{1}{2} \mathcal{N}(heta;0,rac{1}{100})
ight)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Prior $\pi(\theta) \sim U[-10, 10]$

- Likelihood $\pi(y|\theta) = \frac{1}{2}\mathcal{N}(y;\theta,1) + \frac{1}{2}\mathcal{N}(y;\theta,\frac{1}{100})$
- Observed data y_{obs} = 0
- Posterior

 $\pi(\theta|y_{\mathsf{obs}}) \propto \mathbb{1}_{[-10,10]}(\theta) imes \left(rac{1}{2} \mathcal{N}(\theta;0,1) + rac{1}{2} \mathcal{N}(\theta;0,rac{1}{100})
ight)$

Instead find the approximate posterior

 $\pi_{\epsilon}(\theta|y_{\mathsf{obs}}) \propto \pi(\theta) \int \pi(y|\theta) \mathbb{1}(|y-y_{\mathsf{obs}}| \leq \epsilon)) \mathrm{d}y$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Prior $\pi(\theta) \sim U[-10, 10]$

- Likelihood $\pi(y|\theta) = \frac{1}{2}\mathcal{N}(y;\theta,1) + \frac{1}{2}\mathcal{N}(y;\theta,\frac{1}{100})$
- Observed data y_{obs} = 0
- Posterior

 $\pi(\theta|y_{\mathsf{obs}}) \propto \mathbb{1}_{[-10,10]}(\theta) imes \left(\frac{1}{2} \mathcal{N}(\theta;0,1) + \frac{1}{2} \mathcal{N}(\theta;0,\frac{1}{100}) \right)$

Instead find the approximate posterior

 $\pi_{\epsilon}(\theta|y_{\mathsf{obs}}) \propto \pi(\theta) \int \pi(y|\theta) \mathbb{1}(|y-y_{\mathsf{obs}}| \leq \epsilon)) \mathrm{d}y$

$$\pi_\epsilon(heta, y|y_{\mathsf{obs}}) \propto \pi(heta) \pi(y| heta) \mathbb{1}(|y-y_{\mathsf{obs}}| \leq \epsilon)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

<ロ> < 回 > < 回 > < 三 > < 三 > < 三 > の < 0

Problem - regular importance sampling setup gives low weights

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Problem - regular importance sampling setup gives low weights

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution - remove samples with small weights

- Problem regular importance sampling setup gives low weights
- Solution remove samples with small weights
- Setup: target distribution is f(θ) and proposal distribution is g(θ)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Problem regular importance sampling setup gives low weights
- Solution remove samples with small weights
- Setup: target distribution is f(θ) and proposal distribution is g(θ)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Sample $\theta^{(i)} \sim g(\theta)$ and set weights $w^{(i)} = \frac{f(\theta)}{g(\theta)}$

- Problem regular importance sampling setup gives low weights
- Solution remove samples with small weights
- Setup: target distribution is f(θ) and proposal distribution is g(θ)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ► Sample $\theta^{(i)} \sim g(\theta)$ and set weights $w^{(i)} = \frac{f(\theta)}{g(\theta)}$
- Pick a threshold c > 0

- Problem regular importance sampling setup gives low weights
- Solution remove samples with small weights
- Setup: target distribution is f(θ) and proposal distribution is g(θ)
- Sample $\theta^{(i)} \sim g(\theta)$ and set weights $w^{(i)} = \frac{f(\theta)}{g(\theta)}$
- Pick a threshold c > 0
- Accept sample $\theta^{(i)}$ w.p. min $\{1, \frac{w^{(i)}}{c}\}$ and recalculate weights

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Problem regular importance sampling setup gives low weights
- Solution remove samples with small weights
- Setup: target distribution is f(θ) and proposal distribution is g(θ)
- Sample $\theta^{(i)} \sim g(\theta)$ and set weights $w^{(i)} = \frac{f(\theta)}{g(\theta)}$
- Pick a threshold c > 0
- Accept sample $\theta^{(i)}$ w.p. min $\{1, \frac{w^{(i)}}{c}\}$ and recalculate weights

• Resulting distribution $g^*(\theta)$ is closer to $f(\theta)$.

▶ Our goal is to sample from π_n for n = 1,..., N through importance sampling

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- ▶ Our goal is to sample from π_n for n = 1,..., N through importance sampling
- Start with a good approximation ν_1 and sample population $\theta_1^{(i)} \sim \nu_1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ▶ Our goal is to sample from π_n for n = 1,..., N through importance sampling
- Start with a good approximation ν_1 and sample population $\theta_1^{(i)} \sim \nu_1$

• Compute weights $w_1^{(i)} = \frac{\pi_1(\theta_1^{(i)})}{\nu_1(\theta_1^{(i)})}$

- ▶ Our goal is to sample from π_n for n = 1,..., N through importance sampling
- Start with a good approximation ν_1 and sample population $\theta_1^{(i)} \sim \nu_1$
- Compute weights $w_1^{(i)} = \frac{\pi_1(\theta_1^{(i)})}{\nu_1(\theta_1^{(i)})}$

▶ For n > 1 sample from $\nu_n(\theta) = \int \nu_{n-1}(\theta') K_n(\theta', \theta) d\theta'$ by

▶ Our goal is to sample from π_n for n = 1,..., N through importance sampling

Start with a good approximation ν_1 and sample population $\theta_1^{(i)} \sim \nu_1$

• Compute weights $w_1^{(i)} = \frac{\pi_1(\theta_1^{(i)})}{\nu_1(\theta_1^{(i)})}$

► For n > 1 sample from $\nu_n(\theta) = \int \nu_{n-1}(\theta') K_n(\theta', \theta) d\theta'$ by $\theta_n^{(i)} \sim K_n(\theta_{n-1}^{(i)}, \cdot)$

- ▶ Our goal is to sample from π_n for n = 1,..., N through importance sampling
- Start with a good approximation ν_1 and sample population $\theta_1^{(i)} \sim \nu_1$
- Compute weights $w_1^{(i)} = \frac{\pi_1(\theta_1^{(i)})}{\nu_1(\theta_1^{(i)})}$
- ► For n > 1 sample from $\nu_n(\theta) = \int \nu_{n-1}(\theta') K_n(\theta', \theta) d\theta'$ by $\theta_n^{(i)} \sim K_n(\theta_{n-1}^{(i)}, \cdot)$

A D N A 目 N A E N A E N A B N A C N

Recompute the weights and continue

- ▶ Our goal is to sample from π_n for n = 1,..., N through importance sampling
- Start with a good approximation ν_1 and sample population $\theta_1^{(i)} \sim \nu_1$
- Compute weights $w_1^{(i)} = \frac{\pi_1(\theta_1^{(i)})}{\nu_1(\theta_1^{(i)})}$
- ► For n > 1 sample from $\nu_n(\theta) = \int \nu_{n-1}(\theta') K_n(\theta', \theta) d\theta'$ by $\theta_n^{(i)} \sim K_n(\theta_{n-1}^{(i)}, \cdot)$
- Recompute the weights and continue
- Problem sometimes the weights are intractable
- SMC sampler solves it by introducing a backwards in time kernel L_n

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

ABC-PRC

Combines partial rejection control with SMC

ABC-PRC

Combines partial rejection control with SMC

• Sets
$$\pi_n(\theta) = \pi_{\epsilon_n}(\theta, y|y_{obs})$$

ABC-PRC

Combines partial rejection control with SMC Sets π_n(θ) = π_{εn}(θ, y|y_{obs})

PRC1 Initialize t_1, \ldots, t_r , and specify initial sampling distribution μ_1 . Set population indicator t = 1. PRC2 Set particle indicator i = 1. PRC2. If $t_t = 1$ sample $\theta^* + \alpha_{1}(\theta)$ independently from μ_1 . If $t_t > 1$ sample θ^* from the previous population $(\theta_{t-1}^{(0)})$ with weights $(W_{t-1}^{(0)})$, and perturb the particle to $\theta^{**} \sim K_t(\theta \mid \theta^*)$ according to a transition kernel K_t . Generate a data set $x^{**} \sim f(x \mid \theta^{**})$. If $\rho(S(x^{**}), S(x_0)) \ge \epsilon_t$ then go to PRC2.1. PRC2.2 Set $\theta_t^{(0)} = \theta^{**}$ and $W_t^{(0)} = \begin{cases} \pi(\theta_t^{(0)}) / \mu_1(\theta_t^{(0)}) & \text{if } t = 1\\ \pi(\theta_t^{(0)}) / \sum_{i=1}^{N} W_{t-1}(\theta_{t-1}^{(0)}) K_i(\theta_t^{(0)} \theta_{t-1}^{(0)}) & \text{if } t > 1 \end{cases}$

> where $\pi(\theta)$ denotes the prior distribution for θ . If i < N, increment i = i + 1 and go to PRC2.1.

PRC3 Normalize the weights so that $\sum_{i=1}^{N} W_t^{(0)} = 1$. If *ESS* = $\left[\sum_{i=1}^{N} (W_t^{(0)})^2\right]^{-1} < \mathcal{E}$ then resample with replacement, the particles $\{\hat{v}_t^{(0)}\}$ with weights $\{W_t^{(0)}\}$ to obtain a new population $\{\hat{\theta}_t^{(0)}\}$, and set weights $\{W_t^{(0)} = 1/N\}$. PRC4 If t < T, increment t = t + 1 and go to PRC2.

Toy example results

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Toy example results

ABC-REJ

t	€t	ABC-PRC	Prior	Posterior
1	2.000	4.907	-	-
2	0.500	4.899	-	-
3	0.025	66.089	400.806	21.338
	Total	75.895	400.806	21.338

Case study for Tuberculosis Transmission rates

t	€	ABC-PRC	ABC-REJ
1	1.000	2.595	
2	0.5013	8.284	
3	0.2519	8.341	
4	0.1272	7.432	
5	0.0648	10.031	
6	0.0337	17.056	
7	0.0181	34.178	
8	0.0102	72.704	
9	0.0064	171.656	
10	0.0025	1,089.006	7,206.333
Total		1,421.283	7,206.333

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @