
Sequential Monte Carlo without likelihoods

November 23, 2020



ABC setup

I Prior π(θ)

I Likelihood π(y |θ) = ?

I Observed data yobs
I We can’t find the posterior π(θ|yobs) ∝ π(θ)π(yobs|θ) = ?

I Instead find the approximate posterior

πε(θ|yobs) ∝ π(θ)
∫
π(y |θ)Kε(ρ(S(y),S(yobs)))dy

πε(θ, y |yobs) ∝ π(θ)π(y |θ)Kε(ρ(S(y),S(yobs)))
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ABC Rejection sampling

I We want to sample from

f (θ, y) = πε(θ, y |yobs) ∝ π(θ)π(y |θ)Kε(ρ(S(y), S(yobs)))

I We can sample from

g(θ, y) ∝ g(θ)π(y |θ)
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ABC MCMC

I We want to sample from

f (θ, y) = πε(θ, y |yobs) ∝ π(θ)π(y |θ)Kε(ρ(S(y), S(yobs)))

I When the proposal distribution is

q((θ′, y ′)|(θ, y)) ∝ q(θ′|θ)π(y ′|θ′)
the likelihoods cancel in the MH ratio.
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Toy example

I Prior π(θ) ∼ U[−10, 10]

I Likelihood π(y |θ) = 1
2N (y ; θ, 1) + 1

2N (y ; θ, 1
100)

I Observed data yobs = 0

I Posterior

π(θ|yobs) ∝ 1[−10,10](θ)×
(
1
2N (θ; 0, 1) + 1

2N (θ; 0, 1
100)

)
I Instead find the approximate posterior

πε(θ|yobs) ∝ π(θ)
∫
π(y |θ)1(|y − yobs| ≤ ε))dy

πε(θ, y |yobs) ∝ π(θ)π(y |θ)1(|y − yobs| ≤ ε)
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Rejection Control

I Problem - regular importance sampling setup gives low weights

I Solution - remove samples with small weights

I Setup: target distribution is f (θ) and proposal distribution is
g(θ)

I Sample θ(i) ∼ g(θ) and set weights w (i) = f (θ)
g(θ)

I Pick a threshold c > 0

I Accept sample θ(i) w.p. min
{

1, w
(i)

c

}
and recalculate weights

I Resulting distribution g∗(θ) is closer to f (θ).
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Sequential Importance Sampling Sequential Monte Carlo
Sampler

I Our goal is to sample from πn for n = 1, . . . ,N through
importance sampling

I Start with a good approximation ν1 and sample population

θ
(i)
1 ∼ ν1

I Compute weights w
(i)
1 =

π1(θ
(i)
1 )

ν1(θ
(i)
1 )

I For n > 1 sample from νn(θ) =
∫
νn−1(θ′)Kn(θ′, θ)dθ′ by

θ
(i)
n ∼ Kn(θ

(i)
n−1, ·)

I Recompute the weights and continue

I Problem - sometimes the weights are intractable

I SMC sampler solves it by introducing a backwards in time
kernel Ln
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ABC-PRC

I Combines partial rejection control with SMC

I Sets πn(θ) = πεn(θ, y |yobs)
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Case study for Tuberculosis Transmission rates


