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Discrepancies between measures

Aim

Quantify the “difference” between two measures.

e Let P(X) be the set of probability measures on a sample space X.

e We need a map
D :P(X) x P(X) = R.
e Desiderata
1. Tractability: need to be able to implement D(P, Q)
2. Meaningful: the output of D(P, Q) should be consistent with my
application. E.g.
D(P,P) =0,
also
D(P,Q)=0 < Q=P,
and if D(P1,Q) < D(P2,Q), then Py is closer to Q than P5.
3. Sampling Approximation: if Q is replaced by an empirical measure Q,, then
D(P,Qp) should be defined
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Integral Probability metric, Pullback Metrics, and Divergences

Three main families:
1. If F is a space of bounded functions, set

fre- o]

This is a “worst-case error” in expectation. Note D(IP,P) = 0, and we can
easily replace [ fdQ with a U-statistic.

b0 = s

2. If d is a metric on some metric space H, and ® : P(X) — H, then
D(P,Q) = d(®(P), »(Q)).
This is a pseudo-metric. However ®(Q,) might not be defined.

3. Statistical divergences are such that D(P||Q) = 0 iff P = Q. Divergence ~
discrete Lagrangian, further require that information tensor

87 (0) = —03i90 D(Po, Pa) oo

is Riemannian metric. They generate gradient flows.
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Maximum Mean Discrepancies

e An inner product space allows us to measure projections

(u, v).
A Hilbert space H is one for which sequences that are getting closer and
closer converge.

e We then obtain a metric ||u — v|| = /(u — v, u — v) which measure
distances.

e If H is a Hilbert space of functions, measures can act by integration
P:H — R. If P is continuous, then we can define a map ¢ : P +— ®(IP) by
Riesz representation.

e We obtain a pseudo-metric
D(P,Q) = [[®(P) — (Q)]-

e If H is a RKHS (i.e., dx continuous), this is the MMD.
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KL statistical divergence

e KL divergence
_ dQ
KL(@H]P’):/Iog dIP’d@'

e Information metric is the Fisher Matrix.

KL(gdx, pdx) :/Ioqu@—/logpd@.

e |Ignore g term, so we can use U-statistics
KL({X}, pdx) = = > log p(Xi),

Xi ~ Q, which defines maximum likelihood estimators.
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Score Matching

e Fisher “divergence”
M(@IF0) = [ [Vlogpn ~ ¥ log g]f 40
X
— [ (Iv10gl3 + ¥ tog oo+ 2 log po)
X

SM estimator is defined as 5" = argmmeeeSM({X }-1|Po) where
SM({Xi} -1 |[Po) = *ZAWgP@ i)+ *IIVlogpe( X))
e SM breaks down for non-smooth models or for models in which the second

derivative grows very rapidly, inefficient for heavy-tailed distributions,
non-robust for light-tailed distributions
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Minimum Stein Discrepancy Estimators

A Stein operator Sp : G — I'(R) for P with Stein class G, in this context
means:

/ SefldP=0 Vf e g
X

Used to construct integral probability discrepancies with no P-integration: the
Stein discrepancy (SD) F = Sp,[G]

/deF’g—/ fd@‘ = sup
x x g€g

Langevin-Stein discrepancy 7[g] = (Vlogp,g) + V - g. More generally
given m € [(RY*7)

SDS%[Q] (QHP@) = sup
feSp, 9]

/x Sp, [g]d@‘ .

SPlel= SV - (pme) . SPIAI= V- (pmA).

Hence the learning task consists on obtaining the minimum Stein discrepancy
estimators

AStei ; —~

e = argmln%@SDS% g1 ({Xi}7 | Pa).
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Diffusion Score Matching

For S7lg] and = {g € C'(X,R) N L2( Q) : [lgizeny < 1):
/fd@ /deP’

e DSM,(Q|IP) = 0 iff Q = IP when m(x) is invertible

e Recovers SM for m(x)m" (x) = I.

DSM,(Q||P) = sup
fespld]

/Hm (Viogg — Vlong

e Under appropriate assumptions

DSM,(Q|P) = / (HmTVx log p|j3 + |m" Vlog g5 + 2V - (mmTng p)) dQ.
x

e If mis f-independent

DS (1X}al1B0) = & 37 (Im" Vi log poll3 + 29 - (mm” V1o po) ) (X))

i=1
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Diffusion Kernel Stein Discrepancy

e For G unit ball vector-valued RKHS with matrix kernel K

DKSD,m(Q[P)? = / K(x y)dQ ® dQ

1
kox, =———V, -V, x)m(x)K(x,y)m T
(o) = Sipig ¥ Ve (POImEK G Y)m() o)
e U-statistic approximation leads to DKSD estimators
N n 2 1 0
DKSDK»W({X"}I':1”]P9) - n(n_ 1) § k@(Xiv)G)

i#]

e m can depend on 6

o K =klI, m= 1 then DKSD is KSD

e DKSD recovers DSM as a limit

e Statistical divergence when m invertible and K integrally positive definite
e Other examples recover contrastive divergences and minimum probability

flow
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Gradient Descent

e It is often stated that an advantage of Wasserstein-based estimators is

that they take into account the geometry of the sample space

e In order to reflect the geometry of the statistical model in learning tasks
you can follow a stochastic gradient flow generated by the information

metric

goksp(0); = /2 (V0gi log po) " mo(x)K(x, y)mg (v)Vy0pi log pedPy(x)dPo(y),
X

gosm(0)ij = / <mTV8G; log po, mTV(?gj log p9> dPy.
x
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