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Discrepancies between measures

Aim

Quantify the “difference” between two measures.

• Let P(X) be the set of probability measures on a sample space X.

• We need a map

D : P(X)× P(X)→ R.

• Desiderata

1. Tractability: need to be able to implement D(P,Q)

2. Meaningful: the output of D(P,Q) should be consistent with my

application. E.g.

D(P,P) = 0,

also

D(P,Q) = 0 ⇐⇒ Q = P,
and if D(P1,Q) ≤ D(P2,Q), then P1 is closer to Q than P2.

3. Sampling Approximation: if Q is replaced by an empirical measure Qn, then

D(P,Qn) should be defined

2/10



Integral Probability metric, Pullback Metrics, and Divergences

Three main families:

1. If F is a space of bounded functions, set

D(P,Q) ≡ sup
f∈F

∣∣∣∣∫ f dP−
∫

f dQ
∣∣∣∣ .

This is a “worst-case error” in expectation. Note D(P,P) = 0, and we can

easily replace
∫
f dQ with a U-statistic.

2. If d is a metric on some metric space H, and Φ : P(X)→ H, then

D(P,Q) ≡ d(Φ(P),Φ(Q)).

This is a pseudo-metric. However Φ(Qn) might not be defined.

3. Statistical divergences are such that D(P‖Q) = 0 iff P = Q. Divergence ∼
discrete Lagrangian, further require that information tensor

gD
ij (θ) ≡ −∂θi ∂αjD(Pθ,Pα)|α=θ

is Riemannian metric. They generate gradient flows.
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Maximum Mean Discrepancies

• An inner product space allows us to measure projections

〈u, v〉 .

A Hilbert space H is one for which sequences that are getting closer and

closer converge.

• We then obtain a metric ‖u − v‖ ≡
√
〈u − v , u − v〉 which measure

distances.

• If H is a Hilbert space of functions, measures can act by integration

P : H → R. If P is continuous, then we can define a map Φ : P 7→ Φ(P) by

Riesz representation.

• We obtain a pseudo-metric

D(P,Q) ≡ ‖Φ(P)− Φ(Q)‖.

• If H is a RKHS (i.e., δx continuous), this is the MMD.
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KL statistical divergence

• KL divergence

KL(Q‖P) ≡
∫

log
dQ
dP

dQ.

• Information metric is the Fisher Matrix.

•
KL(qdx , pdx) =

∫
log qdQ−

∫
log pdQ.

• Ignore q term, so we can use U-statistics

K̂L({Xi}, pdx) = −
∑

log p(Xi ),

Xi ∼ Q, which defines maximum likelihood estimators.
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Score Matching

• Fisher “divergence”

SM(Q‖Pθ) ≡
∫
X

‖∇ log pθ −∇ log q‖2
2 dQ

=

∫
X

(
‖∇ log q‖2

2 + ‖∇ log pθ‖2
2 + 2∆ log pθ

)
dQ

SM estimator is defined as θ̂SM
n ≡ argminθ∈ΘŜM({Xi}ni=1‖Pθ) where

ŜM({Xi}ni=1‖Pθ) ≡ 1

n

n∑
i=1

∆ log pθ(Xi ) +
1

2
‖∇ log pθ(Xi )‖2

2

• SM breaks down for non-smooth models or for models in which the second

derivative grows very rapidly, inefficient for heavy-tailed distributions,

non-robust for light-tailed distributions
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Minimum Stein Discrepancy Estimators

A Stein operator SP : G → Γ(R) for P with Stein class G, in this context

means: ∫
X

SP[f ]dP = 0 ∀f ∈ G.

Used to construct integral probability discrepancies with no P-integration: the

Stein discrepancy (SD) F ≡ SPθ [G]

SDSPθ [G] (Q‖Pθ) ≡ sup
f∈SPθ [G]

∣∣∣∣∫
X

f dPθ −
∫
X

f dQ
∣∣∣∣ = sup

g∈G

∣∣∣∣∫
X

SPθ [g ]dQ
∣∣∣∣ .

Langevin-Stein discrepancy Tp[g ] = 〈∇ log p, g〉+∇ · g . More generally

given m ∈ Γ(Rd×d)

Sm
p [g ] ≡ 1

p
∇ · (pmg) , Sm

p [A] ≡ 1

p
∇ · (pmA) .

Hence the learning task consists on obtaining the minimum Stein discrepancy

estimators

θ̂Stein
n ≡ argminθ∈ΘŜDSPθ [G]({Xi}ni ‖Pθ).
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Diffusion Score Matching

For Sm
p [g ] and G ≡ {g ∈ C 1(X,Rd) ∩ L2(X;Q) : ‖g‖L2(X;Q) ≤ 1}:

DSMm(Q‖P) ≡ sup
f∈Sp [G]

∣∣∣∣∫
X

f dQ−
∫
X

f dP
∣∣∣∣2 =

∫
X

∥∥∥m> (∇ log q −∇ log p)
∥∥∥2

2
dQ.

• DSMm(Q‖P) = 0 iff Q = P when m(x) is invertible

• Recovers SM for m(x)m>(x) = I .

• Under appropriate assumptions

DSMm(Q‖P) =

∫
X

(
‖m>∇x log p‖2

2 + ‖m>∇ log q‖2
2 + 2∇ ·

(
mm>∇ log p

))
dQ.

• If m is θ-independent

D̂SMm({Xi}ni=1‖Pθ) ≡ 1

n

n∑
i=1

(
‖m>∇x log pθ‖2

2 + 2∇ ·
(
mm>∇ log pθ

))
(Xi )
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Diffusion Kernel Stein Discrepancy

• For G unit ball vector-valued RKHS with matrix kernel K

DKSDK ,m(Q‖P)2 =

∫
k0(x , y)dQ⊗ dQ

k0(x , y) ≡ 1

p(y)p(x)
∇y · ∇x ·

(
p(x)m(x)K(x , y)m(y)>p(y)

)
• U-statistic approximation leads to DKSD estimators

D̂KSDK ,m({Xi}ni=1‖Pθ)2 =
1

n(n − 1)

∑
i 6=j

k0
θ(Xi ,Xj)

• m can depend on θ

• K = kI , m = I then DKSD is KSD

• DKSD recovers DSM as a limit

• Statistical divergence when m invertible and K integrally positive definite

• Other examples recover contrastive divergences and minimum probability

flow
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Gradient Descent

• It is often stated that an advantage of Wasserstein-based estimators is

that they take into account the geometry of the sample space

• In order to reflect the geometry of the statistical model in learning tasks

you can follow a stochastic gradient flow generated by the information

metric

gDKSD(θ)ij =

∫
X2

(∇x∂θj log pθ)>mθ(x)K(x , y)m>θ (y)∇y∂θi log pθdPθ(x)dPθ(y),

gDSM(θ)ij =

∫
X

〈
m>∇∂θi log pθ,m

>∇∂θj log pθ
〉
dPθ.
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