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The problem

o Classical Bayesian setup:
r{y () "

pi =mxly) = =173

@ The objective is to approximate the posterior distribution p.
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— high-level overview

[Liu and Wang, 2016]

@ Leverages Stein’s identity to construct an efficient optimisation
procedure to approximate the posterior.

@ The minimisation of the KL divergence between the posterior and its
approximation.

@ The optimisation bypasses the computation of the normalisation
constant in the posterior in (1).

@ The approximating distribution is represented by 'particles’.

o Particles are updated using a specific smooth transform that
corresponds to the steepest descent direction of the KL divergence.
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Why is this a good idea?

What does this bring to the Bayesian landscape?

@ For variational inference, the variational families that we often
consider are too restrictive and one ofted needs to choose them on a
model by model basis

@ MCMUC is just too slow for certain applications.
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Stein Characterisation

Definition (Stein Characterisation)

A measure P on X C RY with density p is characterised by the pair
(A, F), consisting of a Stein Operator A and a Stein Class F, if it holds

x~P iff Ep[dpop(x)]=0 V¢ e F,

where ¢(x) = [p1(x), -, da(x)] .

All the papers I've seen use the following Stein operator

Apd(-) = V- ¢(-) + ¢(:) - Vxlog p(").
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Example (Stein, 1972)

@ P = N (u,0%) with density function p(x)

@ A fs YR
p

@ F={f:R—oRst fpe Wh and lime, o f(x)p(x) = limx 100 F(x)p(x)}
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Stein Discrepancy

By having two distributions p and g defined on X', we can compute
Ex~q [Ap(x)]. This would no longer be 0, unless p = q. We can use this
fact to define the discrepancy measure between those two distributions:

5(a.p) = max { [Bxwqtrace (A3 ())]’ |

This discrepancy measure seeks to find the function ¢ from the Stein class
F that 'violates' the Stein's identity the most.
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Kernel Stein Discrepancy

To make this 'search’ tenable, we restrict the Stein class to be a unit ball
of an RKHS 9. In this case, the optimisation has a closed form solution:

D(x) = 0g5(3)/ |Gl 10
where
®g.p(") = Exvg [Apk(x, )]
for which we have
S(q,p) = ||¢q pHHd

The space of functions obtained by applying A to the unit ball of ¢ with
kernel k we obtain an RKHS with the kernel kg [Oates et al., 2017]:

ko (x,x") == (Vx - V) k (x,x") + (Vxlog p(x)) - (Vxk (x,x))
+ (Vulogp (X)) - (Vxk (x,X"))
+ (Vxlog p(x)) - (Vx logp (X)) k (x,x")
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What can we use the results above for?

The general VI framework seeks a distribution g* to approximate the target
posterior p:

q" = arg rgin {KL(qllp) = Eq[log q(x)] — Eq[log(7(y|x)m(x))] + log p(y)}
qge
To perform the optimisation, the paper proposes using smooth one-to-one

transforms z = T(x) to explore the space, where T: X — X where x is
drawn from the reference distribution go(x).
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Choosing the transform

If we let T(x) = x + e¢(x), the paper shows that:

Theorem (Steepest Descent)

Let qpr)(z) be the density of z = T(x) when x ~ q(x), then we have

VKL (q71]19)] _g = ~Exwq [trace (Apé(x))]

where Ap¢(x) is the Stein operator.

But we've seen the RHS before and we know how to choose A, and ¢(x)
to maximise it.
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Finite sample approximation

To obtain the ¢ that maximises the discrepancy we approximate the
expectation

¢Z,p(') = Exq [Apk(x, )]

using the empirical distribution of g, represented by n particles:

1 n

— D [k (%) Vg log p (x5) + Vg (31, x)]
j=1

bap(x) =
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The Algorithm

Algorithm 1 Bayesian Inference via Variational Gradient Descent

Input: A target distribution with density function p(z) and a set of initial particles {29}
Output: A set of particles {;}7"_, that approximates the target distribution.
for iteration ¢ do

— 1: + ed* (x ) where @*(x)= Z [k ﬁ logp(wf) + vwfk(xjvx)}s 8

41
T

where ¢ is the step size at the /-th iteration.
end for

Figure: The algorithm
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Example 1

1000 particles to approximate gq.

Oth Iteration 04 200th lteration
0.3
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Figure: Initial g Figure: g after 200 iterations
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Example 2

10 particles to approximate g
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Figure: Initial g Figure: g after 280 iterations
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Discussion

@ SVGD as a gradient flow of the KL divergence functional in the space
of probability measures metrized by a RKHS variant of Wasserstein
distance.

@ A follow-up work proves that as the number of particles and the
number of steps go to infinity, the approximation converges weakly to
the posterior measure.

@ Intuition why ¢* does maximise Kernel Stein Discrepancy.
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@ Liu, Q. and Wang, D. (2016).

Stein variational gradient descent: a general purpose bayesian inference
algorithm.
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https://www.cs.utexas.edu/ glearning/project.html?p=svgd Extra
material: https://arxiv.org/pdf/2004.01822.pdf,.
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Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 79(3):695-718.
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