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The problem

Classical Bayesian setup:

p : = π(x |y) = π(y |x)π(x)
π(y)

(1)

The objective is to approximate the posterior distribution p.
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SVGD – high-level overview

[Liu and Wang, 2016]
Leverages Stein’s identity to construct an efficient optimisation
procedure to approximate the posterior.
The minimisation of the KL divergence between the posterior and its
approximation.
The optimisation bypasses the computation of the normalisation
constant in the posterior in (1).
The approximating distribution is represented by ’particles’.
Particles are updated using a specific smooth transform that
corresponds to the steepest descent direction of the KL divergence.
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Why is this a good idea?

What does this bring to the Bayesian landscape?
For variational inference, the variational families that we often
consider are too restrictive and one ofted needs to choose them on a
model by model basis
MCMC is just too slow for certain applications.
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Stein Characterisation

Definition (Stein Characterisation)

A measure P on X ⊂ Rd with density p is characterised by the pair
(A,F), consisting of a Stein Operator A and a Stein Class F , if it holds

x ∼ P iff EP [APφ(x)] = 0 ∀φ ∈ F ,

where φ(x) = [φ1(x), · · · , φd(x)]>.
All the papers I’ve seen use the following Stein operator

Apφ(·) = ∇x · φ(·) + φ(·) · ∇x log p(·).
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Example

Example (Stein, 1972)

P = N
(
µ, σ2) with density function p(x)

A : f 7→ ∇(fp)
p

F =
{
f : R → R s.t. fp ∈ W 1,1 and limx↘−∞ f (x)p(x) = limx↗+∞ f (x)p(x)

}
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Stein Discrepancy

By having two distributions p and q defined on X , we can compute
Ex∼q [Apφ(x)]. This would no longer be 0, unless p = q. We can use this
fact to define the discrepancy measure between those two distributions:

S(q, p) = max
φ∈F

{
[Ex∼q trace (Apφ(x))]

2
}

This discrepancy measure seeks to find the function φ from the Stein class
F that ’violates’ the Stein’s identity the most.
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Kernel Stein Discrepancy

To make this ’search’ tenable, we restrict the Stein class to be a unit ball
of an RKHS Hd . In this case, the optimisation has a closed form solution:

φ(x) = φ∗q,p(x)/
∥∥φ∗q,p∥∥Hd ,

where
φ∗q,p(·) = Ex∼q [Apk(x , ·)]

for which we have
S(q, p) =

∥∥φ∗q,p∥∥2
Hd

The space of functions obtained by applying A to the unit ball of Hd with
kernel k we obtain an RKHS with the kernel k0 [Oates et al., 2017]:

k0
(
x , x ′

)
:= (∇x · ∇x ′) k

(
x , x ′

)
+ (∇x log p(x)) ·

(
∇x ′k

(
x , x ′

))
+
(
∇x ′ log p

(
x ′
))
·
(
∇xk

(
x , x ′

))
+ (∇x log p(x)) ·

(
∇x ′ log p

(
x ′
))

k
(
x , x ′

)
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What can we use the results above for?

The general VI framework seeks a distribution q∗ to approximate the target
posterior p:

q∗ = argmin
q∈Q

{KL(q‖p) ≡ Eq[log q(x)]− Eq[log(π(y |x)π(x))] + log p(y)}

To perform the optimisation, the paper proposes using smooth one-to-one
transforms z = T (x) to explore the space, where T : X → X where x is
drawn from the reference distribution q0(x).
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Choosing the transform

If we let T (x) = x + εφ(x), the paper shows that:

Theorem (Steepest Descent)
Let q[T](z) be the density of z = T(x) when x ∼ q(x), then we have

∇ε KL
(
q[T ]‖p

)∣∣
ε=0 = −Ex∼q [trace (Apφ(x))] ,

where Apφ(x) is the Stein operator.

But we’ve seen the RHS before and we know how to choose Ap and φ(x)
to maximise it.
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Finite sample approximation

To obtain the φ that maximises the discrepancy we approximate the
expectation

φ∗q,p(·) = Ex∼q [Apk(x , ·)]

using the empirical distribution of q, represented by n particles:

φ̂
∗
q,p(x) =

1
n

n∑
j=1

[
k (xj , x)∇xj log p (xj) +∇xjk (xj , x)

]
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The Algorithm

Figure: The algorithm

Jan Povala Stochastic Variational Gradient Descent <2020-12-11 Fri> 13 / 17



Example 1

1000 particles to approximate q.

Figure: Initial q Figure: q after 200 iterations
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Example 2

10 particles to approximate q

Figure: Initial q Figure: q after 280 iterations
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Discussion

SVGD as a gradient flow of the KL divergence functional in the space
of probability measures metrized by a RKHS variant of Wasserstein
distance.
A follow-up work proves that as the number of particles and the
number of steps go to infinity, the approximation converges weakly to
the posterior measure.
Intuition why φ∗ does maximise Kernel Stein Discrepancy.
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