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The Problem

dx

dt
= f (x , t)

Fundamental Theorem⇐⇒
of Calculus

x(t) = x(0) +

∫ t

0
f (x , s)ds

dx

dt
= f (x , t) + L(x , t)W (t)

x(t) = x(0) +

∫ t

0
f (x , s)ds

+ ”

∫ t

0
L(x , s)dBs”



Integration Theory

Riemann Integral

∫ b

a
f (x)dx = lim

n→∞

n−1∑
i=1

f (ξi )(ti+1 − ti )

ξi ∈ [ti , ti+1)
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Lebesgue Integral

∫ b

a
f (x)µ(dx)



Integration Theory

Riemann Integral

∫ b

a
f (x)dx = lim

n→∞

n−1∑
i=1

f (ξi )(ti+1 − ti )

ξi ∈ [ti , ti+1)

Riemann-Stieltjes Integral

∫ b

a
f dg = lim

n→∞

n−1∑
i=1

f (ξi )(g(ti+1)− g(ti ))

ξi ∈ [ti , ti+1)



Total Variation

Given a continuous function g , it’s total
variation over the interval [a, b] is defined
as

V[a,b](g) = sup
a=t1<···<tn=b

n−1∑
i=1

|g(ti+1)−g(ti )|



Total Variation

Given a continuous function g , it’s total
variation over the interval [a, b] is defined
as

V[a,b](g) = sup
a=t1<···<tn=b

n−1∑
i=1

|g(ti+1)−g(ti )|

A continuous function g is of
bounded TV iff it is a difference of
two continuous increasing
functions.



Total Variation

Given a continuous function g , it’s total
variation over the interval [a, b] is defined
as

V[a,b](g) = sup
a=t1<···<tn=b

n−1∑
i=1

|g(ti+1)−g(ti )|

A continuous function g is of
bounded TV iff it is a difference of
two continuous increasing
functions.

Stieltjes integral for bounded
variation functions is defined as:

∫ b

a
f dg =

∫ b

a
f dg+ −

∫ b

a
f dg−

= lim
n→∞

n−1∑
i=1

f (ξi )(g(ti+1)− g(ti ))



Stieltjes integral interpretation

N days of trading

Si number of shares owned on day i
pi price of one share on day i
Profit of day i is then Si (pi+1 − pi )

Total profits –
∑N

i=1 Si (pi+1 − pi )

S(t) is the number of shares owned at time t and p(t) is the price of the share

Total profits –
∫ T

0 Sdp

If p is differentiable
∫ T

0 Sdp =
∫ T

0 S(t)p′(t)dt.
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Stieltjes integral interpretation
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pi price of one share on day i
Profit of day i is then Si (pi+1 − pi )

Total profits –
∑N
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Itô integral

We want our definition of
∫ b
a XtdBt to be similar, but Bt has unbounded total

variation!
We now have to make a specific choice of ξ:

1. ξ = ti gives rise to the Itô integral:∫ b

a
XtdBt = lim

n→∞

n−1∑
i=1

Xti (Bti+1 − Bti )

2. ξ =
ti+ti+1

2
corresponds to the Stratonovitch integral:

∫ b

a
Xt ◦ dBt = lim

n→∞

n−1∑
i=1

X ti +ti+1
2

(Bti+1 − Bti )
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Properties of Itô integral

I The stochastic processes that we can integrate over with the Itô integral have to
satisfy:

1. *some measurability and adaptivity conditions*
2. E[

∫ b
a
X 2
t dt] < ∞ (or more loosely P[

∫ b
a
X 2
t dt < 1] = 1).

I Itô’s isometry: E[(
∫ b
a XtdBt)2] = E[

∫ b
a X 2

t dt]

I If E[
∫ b
a (X

(n)
t − Xt)2dBt ]→ 0 then

∫ b
a X

(n)
t dBt →

∫ b
a XtdBt .

I E[
∫ b
a XtdBt ] = 0

I Integration by parts: if f is deterministic, continuous and of bounded variation:∫ b

a
f (t)dBt = f (b)Bb − f (a)Ba −

∫ b

a
Btdf (t)
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Itô’s lemma

Itô’s process is a stochastic process Xt such that Xt = X0 +
∫ t

0 Usds +
∫ t

0 VsdBs (for
reasonable Us and Vs).

Itô’s lemma: If Xt is an Itô process, and g(t, x) is twice cts. differentiable, then
Yt = g(t,Xt) is also an Itô process such that

Yt = Y0 +

∫ t

0

∂g

∂s
(s,Xs)ds +

∫ t

0

∂g

∂x
(s,Xs)dXs +

∫ t

0

∂2g

∂x2
(s,Xs)(dXs)2

where

∫ t

0
ZsdXs =

∫ t

0
ZsUsds +

∫ 1

0
ZsVsdBs

dXt = Usds + VsdBs

(dXt)
2 = (dXt) · (dXt)

= (Usds + VsdBs) · (Usds + VsdBs)

= V 2
s dt



Itô’s lemma
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Yt = Y0 +

∫ t

0

∂g

∂s
(s,Xs)ds +

∫ t

0

∂g

∂x
(s,Xs)dXs +

∫ t

0

∂2g

∂x2
(s,Xs)(dXs)2

where

∫ t

0
ZsdXs =

∫ t

0
ZsUsds +

∫ 1

0
ZsVsdBs

dXt = Usds + VsdBs

(dXt)
2 = (dXt) · (dXt)

= (Usds + VsdBs) · (Usds + VsdBs)

= V 2
s dt
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Example

Solve dNt
dt

= (r + αWt)Nt with some given N0

In Itô interpretation, this becomes: find Nt s.t. Nt = N0 +
∫ t

0 rNsds +
∫ t

0 αNsdBs

In differential form: dNt = rNtdt + αNtdBt or dNt
Nt

= rdt + αdBt

Claim:
∫ t

0
dNs
Ns

= rt + αBt

Proof:
∫ t

0
dNs
Ns

=
∫ t

0
rNs
Ns

ds +
∫ t

0
αNs
Ns

dBs = rt + αBt

Consider g(t, x) = log x . Then for Yt = log Nt

Yt = Y0 +

∫ t

0

dNs

Ns
+

1

2

∫ t

0
−

1

N2
s

(dNt)
2

= Y0 +

∫ t

0

dNs

Ns
−
α2t

2

So log Nt
N0

=
∫ t

0
dNs
Ns
− α2t

2
= rt + αBt − α2t

2
=⇒ Nt = N0 exp(rt + αBt − α2t

2
)

Stratonovich interpretation gives the solution Nt = N0 exp(rt + αBt)
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In Itô interpretation, this becomes: find Nt s.t. Nt = N0 +
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Stratonovich interpretation gives the solution Nt = N0 exp(rt + αBt)



Comparison with Stratonovich Integral

I Different solutions to ”the same” differential equation

I Itô’s integral is mostly used in mathematics and finance, because it is a martingale

I Stratonovich integral is more used in physics

I The two are equivalent in the sense that

dXt = F (t,Xt)dt + L(t,Xt) ◦ dBt

dXt = F (t,Xt)dt + L(t,Xt)dBt +
1

2

∂2L

∂x2
(t,Xt)L(t,Xt)dt

Give the same solutions.
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Discussion

I Intuition behind quadratic variation.

I Connection between white noise and Itô and Stratonovich integrals. I.e. what’s
the precise definition of the derivative of Brownian motion? Does it coincide with
either of the integrals?
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