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Integration Theory

Riemann Integral
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Integration Theory

Riemann Integral Riemann-Stieltjes Integral
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Total Variation

Given a continuous function g, it's total
variation over the interval [a, b] is defined
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Total Variation

Given a continuous function g, it's total A continuous function g is of
variation over the interval [a, b] is defined bounded TV iff it is a difference of
as two continuous increasing
functions.
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Total Variation

Given a continuous function g, it's total A continuous function g is of
variation over the interval [a, b] is defined bounded TV iff it is a difference of
as two continuous increasing
functions.
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Stieltjes integral interpretation

N days of trading

S; number of shares owned on day i
pi price of one share on day i

Profit of day i is then S;(p;i11 — pi)
Total profits — ZlNzl Si(pi+1 — pPi)

5(t) is the number of shares owned at time t and p(t) is the price of the share
Total profits — fOT Sdp
If p is differentiable [ Sdp = [, S(t)p/(t)dt.



[t6 integral

We want our definition of fab XtdB; to be similar, but B; has unbounded total
variation!
We now have to make a specific choice of ¢:

1. & = t; gives rise to the Itd integral:

b n—1
/a XedBe = lim_ ;Xt;(Bt,-ﬂ - By)



[t6 integral

We want our definition of fab XtdB; to be similar, but B; has unbounded total
variation!
We now have to make a specific choice of ¢:

1. & = t; gives rise to the Itd integral:
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/a XtdB: = nimoo Xl:xti(BtHl - Bt,-)
i=

2. &= H% corresponds to the Stratonovitch integral:
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Properties of 1td integral

» The stochastic processes that we can integrate over with the Itd integral have to
satisfy:

1. *some measurability and adaptivity conditions*
2. IE[f: XZdt] < oo (or more loosely ]P’[fab X2dt < 1] = 1).

Itd’s isometry: E[([” X.dB:)?] = E[[’ X2dt]
If E[f2(X{") — X;)2dB] — 0 then [*X{"aB, — [’ X.dB:.
E[[? X:dB:] = 0

Integration by parts: if f is deterministic, continuous and of bounded variation:
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In Itd interpretation, this becomes: find N; s.t. Ny = N + fot rNsds + fotaNsst
In differential form: dN; = rN;dt + aN:dB; or d—l\:t = rdt + ad B¢

Claim: [§ 9% = rt + aB:

Proof: ft st fot %ds + ft O‘Nsst =rt+ aB;
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Solve T (r + aW;)N; with some given N

In Itd interpretation, this becomes: find N; s.t. Ny = N + fot rNsds + fotaNsst
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Example

Solve dd—’\if = (r + aW;:)N; with some given Ny
In Itd interpretation, this becomes: find N; s.t. Ny = N + fot rNsds + fotaNsst
dny

In differential form: dN; = rN;dt + aN:dB; or = rdt + adB;
Claim: [§ 9% = rt + aB:

Proof: ft st ft 'Nsd +ft O‘Nsst—rt—i—oeBt

Consider g(t x) = Iog . Then for Y: = log N¢
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Example

Solve dd—’\if = (r + aW;:)N; with some given Ny

In Itd interpretation, this becomes: find N; s.t. Ny = N + fot rNsds + fotaNsst
In differential form: dN; = rN;dt + aN:dB; or d—l\:t = rdt + ad B¢

Claim: [§ 9% = rt + aB:

Proof: ft st ft 'Nsd +ft O‘Nsst—rt—i—oaBt

Consider g(t x) = Iog . Then for Y: = log N¢

tdN, 1/t 1
Yi= Yo+ 5+7/ —— (dN¢)?
0

o Ns 2 N2
tdNs ot
=Y, 2
o+ s Ne 5
So Iong —ftd'\slsf—t_rtJraBtfaTZt — Nt:Noexp(rt+aBtf—)

Stratonovich interpretation gives the solution Ny = Np exp(rt + aBt)
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Comparison with Stratonovich Integral

» Different solutions to "the same” differential equation
P Itd’'s integral is mostly used in mathematics and finance, because it is a martingale
» Stratonovich integral is more used in physics

> The two are equivalent in the sense that

dXt = F(t7 Xt)dt + L(t,Xt) [e] dBt
16%L

dX: = F(t, X¢)dt + L(t, X¢)dB: + 5ﬁ(t,xt)L(t, X¢)dt
X

Give the same solutions.



Discussion

P Intuition behind quadratic variation.

» Connection between white noise and Itd and Stratonovich integrals. l.e. what's
the precise definition of the derivative of Brownian motion? Does it coincide with
either of the integrals?
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