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Motivation

The linear time dependent SDE is written down as

dx = F (t)xdt + u(t)dt + L(t)dβ x0 ∼ N (m0,P0) (1)

x(t) ∈ RD , u(t) ∈ Rd is a vector valued function of time (an
input to the linear system), and β(t) ∈ Rs is a Brownian motion
with diffusion matrix Q.
The solution x is different for each realisation.
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Example: Statistics of the Ornstein–Uhlenbeck process
The solution x is different for each realisation.

Figure: 50 realisations of the Ornstein–Uhlenbeck process, solved for
discrete time. The black line is the mean m(t) and the mean m(t) and
covariance P(t) define the quantiles. How do we evaluate the mean
m(t) and covariance P(t)?



Solving for the mean and covariance of SDEs
By substituting in suitable functions to Itô’s formula and taking
expectations we obtained

dm
dt

= E [f (x , t)] (2)

dP
dt

= E [f (x , t)(x−m)T ]+E [(x−m)f T (x , t)]+E [L(x , t)QLT (x , t)]

(3)
which are differential equations for mean and variance of the state.
In the linear case, they reduce to

dm
dt

= F (t)m + u(t) (4)

dP
dt

= F (t)P + PFT (t) + L(t)QLT (t) (5)

with the intial conditions m(t0) = m0 and P(t0) = P0.
Note that Eq. (5) is the Lyapunov differential equation.
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Ornstein–Uhlenbeck process: Mean m(t) and covariance
P(t)

dx = −λxdt + dβ (6)

where λ > 0 and Brownian motion β(t) has diffusion constant q.

dm

dt
= E [−λx ] = −λm (7)

dP

dt
= 2E [−λ(x −m)2] + E [q] = −2λP + q (8)

This result leads to the solutions

m = m0 exp(−λt) (9)

P =
q

2λ
(1− exp(−2λt)) (10)

with P0 = 0.



Ornstein–Uhlenbeck process: Mean m(t) and covariance
P(t)



The solution to a linear SDE is a Gaussian process

The general solutions to these differential equations are (recall the
definition of the transition matrix Ψ(τ, t))

m(t) = Ψ(t, t0)m(t0) +

∫ t

t0

Ψ(t, τ)u(τ)dτ, (11)

P(t) = Ψ(t, t0)P(t0)ΨT (t, t0)+

∫ t

t0

Ψ(t, τ)L(τ)QLT (τ)ΨT (t, τ)dτ

(12)
Because the solution is a linear transformation of Brownian
motion, which is a Gaussian process, the solution is Gaussian

p(x , t) := p(x(t)) = N (x(t)|m(t),P(t)), (13)

which can be verified by checking that this density indeed solves
the corresponding FPK equation.
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Ornstein–Uhlenbeck process: Mean m(t) and covariance
P(t)

dx = −λxdt + dβ (14)

What is the form of Ψ(s, t)? One of the defining properties of
Ψ(τ, t) is

∂Ψ(τ, t)

∂τ
= −F (τ)Ψ(τ, t) (15)

Let Ψ(s, t) = exp(−
∫ s
t λ(τ)dτ), which is a solution of Eq. 15 and

all the other properties of Ψ(τ, t). This result leads to the solutions

m = m0 exp(−λt) (16)

P =
q

2λ
(1− exp(−2λt)) (17)

where P0 = 0



Matrix Fraction Decomposition
In reality, P(t) may not be easy to solve, say if we can’t find a
form of Ψ(τ, t).

A convenient numerical method for solving the covariance from the
Lyapunov differential equation. If we defined C (t) and D(t) such
that P(t) = C (t)D−1(t) then P(t) solves the matrix Lyapunov
equation

dP
dt

= F (t)P(t) + P(t)FT (t) + L(t)QLT (t) (18)

if the matrices C (t) and D(t) solve the differential equation[
dC/dt
dD/dt

]
=

[
F (t) L(t)QLT (t)

0 −FT (t)

] [
C
D

]
, (19)

and P(t0) = C (t0)D−1(t0). We can select, for example,

C (t0) = P(t0) and D(t0) = I (20)
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Obtaining the transition density p(x(t)|x(s))

Remember that we solved for the mean m(t) and covariance P(t)
using initial conditions m(t0) = m0 and P(t0) = P0? The
transitional density can be recovered by formally using the initial
conditions m(s) = x(s) and P(s) = 0
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Obtaining the transition density p(x(t)|x(s))

m(s) = x(s) and P(s) = 0 gives

p(x(t)|x(s)) = N (x(t)|m(t|s),P(t|s)), (21)
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P(t|s) =

∫
Ψ(t, τ)L(τ)QLT (τ)ΨT (t, τ)dτ. (25)

This implies that the original linear SDE is (weakly, in distribution)
equivalent to the following discrete-time system:

x(tk+1) = Akx(tk) + uk + qk , qk ∼ N (0,Σk), (26)

which is sometimes called the equivalent discretisation of SDEs in
Kalman filtering context.
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Ornstein–Uhlenbeck process: Equivalent discretisation
At the discrete time-steps {tk}, then the distributions of the
continuous time and discrete-time equivalent coincide.
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Covariance function of LTI SDEs
The autocovariance function C (t, s) characterises the interaction
of states at different times, t and s, it is defined as

C (t, s) = E [(x(t)−m(t))(x(s)−m(s))T ] (27)

It can be shown that, in the LTI case,

C (t, s)

{
P(t) exp((s − t)F )T , if t < s

exp((t − s)F )P(t), if t ≥ s.
(28)

At steady state, the solution to dP
dt = 0 is P∞, the steady state

process covariance.

The covariance function only depends on the difference τ = s − t
of those times.

C (τ)

{
P∞ exp(τF )T , if τ > 0

exp(−τF )P∞(t), if τ ≤ 0
(29)
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Fourier Analysis of LTI SDEs

Consider the stochastic differential equation

dx
dt

= Fx + Lw (30)

and assume that it has already reached its stationary state and
hence it also has zero mean.

We get the following solution for the Fourier transform X (iω) of
x(t):

X (iω) = (iωI − F )−1LW (iω) (31)

where W (iω) is the Fourier transform of white noise w(t).
For a system in its stationary state, then G (iω) = (iωI − F )−1L
can be thought of as the transfer function of the system.
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Fourier Analysis of LTI SDEs

If the Fourier transform of a process x(t) is X (iω), then its
spectral density matrix is

Sx(ω) = E [X (iω)XT (−iω)] (32)

The spectral density of x(t) is now given by the matrix

Sx(ω) = G (iω)−1E [W (iω)W T (−iω)]GT (−iω)

= G (iω)−1QGT (−iω).
(33)

The Winer-Khinchin theorem says that the covariance function is
the inverse Fourier transform of the spectral density, so

Cx(τ) = F−1[Sx(ω)] = F−1[G (iω)−1QGT (−iω)] (34)

This provides a useful means of computing the covariance function
of a solution to a stochastic differential equation without first
explicitly solving the equation.
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