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Description

Transformation done by using the substitution y =
∫ x
ξ

1
L(u,t)du

which allows us to change an SDE with multiplicative noise:

dx = f (x , t)dt + L(x , t)dβ (1)

Into one with additive noise:

dy = g(y , t)dt + dβ (2)

Note that it is possible to extend this to a multivariate setting
when L(x, t) is diagonal with Lii (x, t) only depending on xi .



Approach for Scalar SDE

1. Assuming we have an SDE of the following form:

dx = f (x , t)dt + L(x , t)dβ (3)

2. Use Itô’s formula to compute dy given y =
∫ x
ξ

1
L(u,t)du:

dy=

(
∂

∂t

∫ x

ξ

1

L(u, t)
du +

f (x , t)

L(x , t)
− 1

2

∂L(x , t)

∂x

)∣∣∣∣
x=h−1(y ,t)︸ ︷︷ ︸

g(y,t)

dt+dβ

(4)

3. Solve the preceding SDE for y(t) and compute the solution for
x(t) by undoing the transformation through a re-substitution.



Example

We want to solve the following SDE:

dx =

(
αx log x +

1

2
x

)
dt + x dβ (5)

Using the substitution y =
∫ x
ξ

1
udu = log(x) where ξ = 1, we can

calculate dy to get dy = αydt + dβ. Solving for y(t):

y(t) = y(t0) exp(α(t − t0)) +

∫ t

t0

exp(α(t − τ))dβ(τ) (6)

Re-substituting to get a solution for x(t):

x(t) = exp

(
log(x(t0)) exp(α(t − t0)) +

∫ t

t0

exp(α(t − τ))dβ(τ)

)
(7)
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Key Definitions

Definition

Brownian motion: a continuous stochastic process βββ(t) ∈ RS that
has the following properties:

1. Given Q is the diffusion matrix of the process and we define
∆βββk = βββk+1 − βββk and ∆tk = ∆tk+1 −∆tk , then
∆βββk ∼ N (0,Q∆tk).

2. βββ(t) has independent increments (given no time overlaps).

3. βββ(0) = 0.

Definition

Quadratic variation:

[X ,X ]t = lim
tk+1−tk→0

∑
tk≤t

∣∣Xtk − Xtk−1

∣∣2



Lévy’s Characterization

Using the first property of Brownian motion β from the previous
slide and assuming q = 1, we can claim that [β, β]t = t which is
key for Lévy’s characterization.

Theorem

Lévy’s characterization of Brownian motion: let the stochastic
process {X (τ)|0 ≤ τ ≤ t} have the following properties:

1. X (t) is a continuous martingale.

2. X (0) = 0.

3. [X ,X ]t = t.

Then, X (t) can be considered a standard Brownian motion.



Weiner Measure

Using the definition of Brownian motion, we can define the joint
distribution over β(t) evaluated at a finite number of time points:

p (β (t1) , . . . , β (tT )) =
T−1∏
k=0

N (β (tk+1) | β (tk) , tk+1 − tk) (8)

This is valid for any finite number of time points and therefore
defines a valid probability measure for the stochastic process. It is
also possible to show that this measure has several properties such
as that this measure is unique and has a continuous version.



Weiner Measure via Path Integral

We can use this to define a measure over a set BT of discrete
paths:

P ((β (t1) , . . . , β (tT )) ∈ BT )
=
∫
BT p (β (t1) , . . . , β (tT ))dβ (t1)× · · · × dβ (tT )

=
∫
BT exp

(
−1

2

∑T−1
k=0

(β(tk+1)−β(tk ))2

(tk+1−tk )2
(tk+1 − tk)

)
×
∏T−1

k=0
dβ(tk+1)√
2π(tk+1−tk )

(9)

Given B is the set of functions on [0, t] and that
(β (tk+1)− β (tk))2 / (tk+1 − tk)2 → β̇2(t):

PW(β ∈ B) =

∫
B

exp

(
−1

2

∫ t

0
β̇2(τ)dτ

) t∏
τ=0

dβ(τ)√
2πdτ

(10)



Limit of a Random Walk

We may construct Brownian motion by considering the limit of a
random walk time increment tends to zero. A random walk is a
stochastic process that changes value at each integer step. For
example:

βk+1 = βk + qk , qk ∼ N (0, tk+1 − tk) (11)

Let sk =
∑k

i=1 ξi where ξ ∈ {−1, 1} and Sn(t) =
s[nt]√

n
. We can

then define the following:

Sn (tk+1)− Sn (tk) =
S[ntk+1]√

n
−

S[ntk ]√
n

=

∑ntk+1

i=ntk+1 ξi√
n

(12)



Limit of a Random Walk (Cont.)

Theorem

Central limit theorem: given the random variable Xi where

E[Xi ] = 0 and E[Xi
2] = σ2, we may claim that

∑n
i=0 Xi√
n
→ N (0, σ2)

as n→∞.

E[Sn (tk+1)− Sn (tk)] =

∑ntk+1

i=ntk+1 E[ξi ]√
n

= 0 (13)

V [Sn (tk+1)− Sn (tk)] =

∑ntk+1

i=ntk+1 V [ξi ]

n
(14)

=
ntk+1 − ntk − 1 + 1

n
(15)

= tk+1 − tk (16)

Therefore, as n→∞, we may claim that:

Sn (tk+1)− Sn (tk)→ N (0, tk+1 − tk) (17)

Sn(t)→ β(t) (18)



Karhunen-Loeve Expansion

Brownian motion can also be defined as a zero-mean Gaussian
process with the covariance function C (t, t ′) = min(t, t ′). We may
therefore use Mercer’s theorem which states that for eigenvalues
λn and eigenfunctions φn, we may perform the following
decomposition:

C
(
t, t ′
)

=
∞∑
n=1

λnφn(t)φn
(
t ′
)

(19)

We can therefore describe Brownian motion through its
karhunen-Loeve expansion, where zn ∼ N (0, λn):

β(t) =
∞∑
n=1

znφn(t) (20)
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Purposes

The importance of the Girsanov theorem cannot be overstate.
Notable use cases include:

1. Transforming a probability measure of SDEs.

2. Removing and transforming drift function of SDEs.

3. Finding weak solutions to SDEs.

4. Used as a starting point to derive the Kallianpur–Striebel
formula (Bayes’ rule in continuous time).

5. Form MC methods for approximating filtering solutions.

6. Construct sampling methods for conditioned SDEs.



Definitions

Let x(t) be stochastic process which solves the SDE
dx = f(x, t)dt + dβββ with the path on time interval [0, t] denoted
as Xt = {x(τ)|0 ≤ τ ≤ t}.

p (Xt) = lim
n→∞

p (x (t1) , x (t2) , . . . , x (tn)) (21)

p (Xt)

p (Yt)
= lim

n→∞

p (x (t1) , x (t2) , . . . , x (tn))

p (y (t1) , y (t2) , . . . , y (tn))
(22)

E [h (Xt)] =

∫
h (Xt) p (Xt)dXt (23)



Likelihood Ratio

Theorem

Likelihood ratio of Itô process: Let x(t) and y(t) respectively solve
the SDEs dx = f(x, t)dt + dβββ and dy = g(y, t)dt + dβββ. Given that
p(Xt)
p(Yt) = Z (t), we may claim the following:

Z (t) = exp

(
−1

2

∫ t

0
[f(y, τ)− g(y, τ)]>Q−1[f(y, τ)− g(y, τ)] dτ

+

∫ t

0
[f(y, τ)− g(y, τ)]>Q−1 dβ(τ)

)
(24)



Likelihood Ratio (Cont.)

Theorem (Cont.)

For an arbitrary function h, we may claim that:

E[h(Xt)] = E[Z (t)h(Yt)] (25)

Furthermore, given the probability density p̃ (Xt) = Z (t)p (Xt),
the following process is a Brownian motion with diffusion matrix Q
under the transformed probability density:

β̃ = β −
∫ t

0
[f(y, τ)− g(y, τ)]dτ (26)



Girsanov I

Theorem

Girsanov I: Let θθθ(t) be a process that is driven by standard
Brownian motion βββ(t) such that E[

∫ t
0 θθθ

T (τ)θθθ(τ)dτ ] <∞. Given
the new measure defined by p̃ (Θt) = Z (t)p (Θt) where

Z (t) = exp

(∫ t

0
θ>(τ)dβ − 1

2

∫ t

0
θ>(τ)θ(τ)dτ

)
(27)

Then the following process is a standard Brownian motion:

β̃(t) = β(t)−
∫ t

0
θ(τ)dτ (28)



Example of Weak solution for SDE

Given a stochastic process xxx(t) which solves dx = f(x, t)dt + dβββ
where xxx(0) = xxx0 and we define the following:

Z (t) = exp

(
−1

2

∫ t

0
f> (x0 + β(τ), τ)Q−1f (x0 + β(τ), τ) dτ

+

∫ t

0
f> (x0 + β(τ), τ)Q−1 dβ(τ)

)
(29)

We may then claim the following:

E[h(x(t))] = E [Z (t)h (x0 + β(t))] (30)

x̃(t) = x0 + β(t) (31)

β̃(t) = β(t)−
∫ t

0
f (x0 + β(τ))dτ (32)



Intuition
We first define the following two discrete processes which
respectively represent Brownian motion without and with drift:

β(tk) = β(tk−1) + ∆β(tk), ∆β(tk) ∼ N (0,∆tq) (33)

x(tk) = x(tk−1) + fk∆t + β(tk), ∆β(tk) ∼ N (0,∆tq) (34)

We can respectively write the joint distribution for both of these
terms using the Weiner measure:

p(β(t1), . . . , β(tn)) =
1

(
√

2π∆tq)n
exp

(
− 1

2∆tq

n∑
k=1

∆β2k

)
(35)

p(x(t1), . . . , x(tn)) =
1

(
√

2π∆tq)n
exp

(
− 1

2∆tq

n∑
k=1

∆β2k+

1

q

n∑
k=1

fk∆βk −
1

2q

n∑
k=1

f 2k ∆t

) (36)



Intuition (Cont.)

The ratio of these discrete probability densities has the following
form:

p (x (t1) , . . . , x (tk))

p (β (t1) , . . . , β (tn))
= exp

(
1

q

n∑
k=1

fk ∆βk −
1

2q

n∑
k=1

f 2k ∆t

)
, Zn (β (t1) , . . . , β (tn)) ,

(37)

When we take the limit as n→∞ we get the following:

Z (t) = exp

(
1

q

∫ t

0
f (t)dβ − 1

2q

∫ t

0
f 2(t)dt

)
(38)

Note that this still works if f depends on the process β.



Intuition (Cont.)

Since Zn is just a ratio of densities, we may claim:

E[h(x(t1), . . . , x(tn)] = E[Zn(β(t1), . . . , β(tn))h(β(t1), . . . , β(tn))]
(39)

Hence, Zn allows us to construct a transformed probability
measure:

p̃ (β (t1) , . . . , β (tn)) = Zn (β (t1) , . . . , β (tk)) p (β (t1) , . . . , β (tn))
(40)

Similar to the continuous case, we can define the following process
which is a Brownian motion defined under p̃:

β̃(tk) = β(tk)−
∑
k

fk∆t (41)
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Purposes

Several use cases of Doob’s h-transform include:

1. Deriving an SDE conditioned on another SDE at its end point.

2. Removing drift from SDEs.

3. Analyzing hitting times and excursions of SDEs.

Definition

Hitting time: the first time at which a stochastic process assumes
some value in a subset of the sample space.
Excursion probability: the probability that the stochastic process
surpasses some value during a fixed time period.



Important Terms

Given a transition density defined as p(y, t ′|x, t) , p(y(t ′)|x(t)),
we may define a function that satisfies the following (space-time
regularity property):

h(t, x) =

∫
p(y, t ′|x, t)h(t + s, y)dy (42)

Using such a function, we can define a new Markov process with
the transition kernel:

ph(y, t + s|x, t) = p(y, t + s|x, t)
h(t + s, y)

h(t, x)
(43)



Intuitive Overview

The following steps outlines the mechanics behind Doob’s
h-transform:

1. We are interested in constructing an SDE that follows
ph = p(x(t + s)|x(t), x(T )).

2. Choosing h(t, x) = p(x(T )|x(t)) allows the ph to be the
desired distribution and h also satisfies the space-time
regularity property.

3. Use the operator A on Φ(x) where x is characterized by ph.
The purposed of doing this is to get the SDE which will follow
the distribution that is specified by Ph.



Operator Result

We are able to derive the following:

Ah{Φ(x)} =A{Φ(x)h(x)}

=
∑
i

[
fi (x, t) + L(x, t)QL>(x, t)

∇h(t, x)

h(t, x)

]
∂φ(x)

∂xi

+
1

2

∑
i ,j

∂2φ(x)

∂xi∂xj

[
L(x, t)QL>(x, t)

]
ij

(44)

Where could construct the associated SDE by matching with:

At(•) =
∂(•)
∂t

+
∑
i

∂(•)
∂xi

fi (x, t)

+
1

2

∑
i ,j

(
∂2(•)
∂xi∂xj

)[
L(x, t)QL>(x, t)

]
ij

(45)



End point Conditioning

Theorem

Given a process x(t) that solves dx = f (x , t)dt + L(x , t)dβ and
assuming that we want to condition its solution to hit x(T ) at
time t = T , then the h-transform provides us with the following
SDE for the conditioned process:

dx =
[
f(x, t) + L(x, t)QL>(x, t)∇ log p(x(T ) | x(t))

]
dt

+L(x, t)dβ,
(46)

Note that in the statement of this theorem we are using:

h(t, x) = p(x(T )|x(t)) (47)



Example

Assume we have a process x(t) which solves dx = −λxdt + dβ
where x(0) = 0 (Ornstein-Uhlenbeck process). Using the preceding
theorem, we want to condition on x(T ) = xT :

h(t, x) = N
(
xT | a(t)x , σ2(t)

)
(48)

a(t) = exp(−λ(T − t)) (49)

σ2(t) =
q

2λ
[1− exp(−2λ(T − t))] (50)

Which then results in:

dx =

[
−λx +

qa(t)

σ2(t)
(xT − a(t)x)

]
dt + dβ (51)
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Path Integrals

The expectation of a functional F [β] with respect to its measure
could be defined as follows:

E[F ] =

∫
F [β] exp

(
−1

2

∫ t

0
β̇2(τ)dτ

) t∏
τ=0

dβ(τ)√
2πdτ

(52)

We may rely on SDE methods to solve this. For example, say we

want to compute the path integral of F [β] = exp
(∫ t

0 β(s)ds
)

and

we know that x1(t) =
∫ t
0 β(s)ds is the solution to dx1 = x2dt,

dx2 = dβ. Armed with the knowledge that x1 ∼ N (0, t3/3), we
may compute the following:

E[F ] =

∫
exp (x1)N

(
x1 | 0, t3/3

)
dx1 = exp

(
t3

6

)
(53)
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Description

The Feynman-Kac formula provides a way to link the solution of
PDEs with certain expected values of SDE solutions. To
demonstrate how this is done, we start off with the following PDE:

∂u

∂t
+ f (x)

∂u

∂x
+

1

2
L2(x)

∂2u

∂x2
= 0

u(x ,T ) = Ψ(x)

(54)

We then define a stochastic process x(t) on interval [t ′,T ] as
being a solution to dx = f (x)dt + dβ with x(t ′) = x ′. How could
we use this process to help us compute the u(x ,T )?



Description (Cont.)

First, we compute the differential du using Itô’s formula:

du =
∂u

∂x
L(x)dβ (55)

Integrate from t ′ to T :

u(x(T ),T )− u(x
(
t ′), t ′

)
=

∫ T

t′

∂u

∂x
L(x)dβ (56)

Take expectations on both sides:

u(x
(
t ′), t ′

)
= E[u(x(T ),T )] = E[Ψ(x(T ))] (57)

Idea: we could solve for u(x ′, t ′) by starting a process x(t) from
time t ′ until T and then computing the expectation E[Ψ(x(T ))].



Main Result

This idea could be generalized to solve PDEs of the following form:

∂u

∂t
+ f (x)

∂u

∂x
+

1

2
L2(x)

∂2u

∂x2
− ru = 0

u(x ,T ) = Ψ(x),

(58)

In this case, we must use the following Feynman-Kac equation:

u
(
x ′, t ′

)
= exp

(
−r
(
T − t ′

))
E[Ψ(x(T ))] (59)

The Feynman-Kac formula can be generalized to the
multidimensional case and can be used to construct algorithms for
the following:

1. Solving Backward PDEs with SDE Simulation.

2. Solving Forward PDEs with SDE Simulation.

3. Solving boundary value problems with SDE simulation.
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Overview

1. Lamperti transform: substitution used to turn an SDE with
multiplicative noise into one with additive noise.

2. Brownian motion construction: there exists different ways of
constructing Brownian motion (e.g. Lévy, random walk,
Karhunen-Loeve).

3. Girsanov theorem: used to perform a change of measure for
stochastic processes.

4. Doob’s h-transform: used to condition stochastic processes to
hit a certain value at a particular time.

5. Path integrals: allows for the use of SDE theory to compute
the expectation of functionals.

6. Feynman-Kac formula: provides a link between PDE solutions
and expectations of certain SDE solutions.


	Lamperti Transform
	Constructions of Brownian Motion and the Weiner Measure
	Girsanov Theorem
	Doob's h-Transformation
	Path Integrals
	Feynman-Kac Formula
	Summary

