The strong order of convergence is defined to be the largest exponent $\gamma$ such that if we numerically solve and SDE using $M = 1 / \Delta t$ steps of size $\Delta t$, then there exists a constant $K$ such that $$ \mathrm{E}[\vert \mathbf{x}(t_M) - \mathbf{\hat{x}}(t_M)\vert] \leq K \Delta t^{\gamma} $$
The weak order of convergence is the largest exponent $\alpha$ such that $$ \left|\mathrm{E}\left[g\left(\mathbf{x}\left(t_{M}\right)\right)\right]-\mathrm{E}\left[g\left(\hat{\mathbf{x}}\left(t_{M}\right)\right)\right]\right| \leq K \Delta t^{\alpha}, $$ for any polynomial $g$. Note that for for the weak convergence we only need to approximate the distribution.
Under the weak convergence criterion, the two solutions would have very similar error.
For an ODE of this form
$$ \frac{\mathrm{d} \mathbf{x}(t)}{\mathrm{d} t}=\mathbf{f}(\mathbf{x}(t), t), \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}, $$the integral form reads $$ \begin{equation} \mathbf{x}(t)=\mathbf{x}\left(t_{0}\right)+\int_{t_{0}}^{t} \mathbf{f}(\mathbf{x}(\tau), \tau) \mathrm{d} \tau \label{eq:ode-integral} \end{equation} $$
If the function $\mathbf{f}$ is differentiable we can write it as the solution to the following ODE:
$$ \frac{\mathrm{df}(\mathbf{x}(t), t)}{\mathrm{d} t}=\frac{\partial}{\partial t} \mathbf{f}(\mathbf{x}(t), t)+\sum_{i} f_{i}(\mathbf{x}(t), t) \frac{\partial}{\partial x_{i}} \mathbf{f}(\mathbf{x}(t), t) $$with $\mathbf{f}(\mathbf{x}(t_0), t_0)$ as the initial condition. The integral form of this ODE is:
$$ \begin{array}{l} \mathbf{f}(\mathbf{x}(t), t)=\mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right) \\ \quad+\int_{t_{0}}^{t}\left[\frac{\partial}{\partial t} \mathbf{f}(\mathbf{x}(\tau), \tau)+\sum_{i} f_{i}(\mathbf{x}(\tau), \tau) \frac{\partial}{\partial x_{i}} \mathbf{f}(\mathbf{x}(\tau), \tau)\right] \mathrm{d} \tau, \end{array} $$which can be neatly written as $$ \mathbf{f}(\mathbf{x}(t), t)=\mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right)+\int_{t_{0}}^{t} \mathscr{L} \mathbf{f}(\mathbf{x}(\tau), \tau) \mathrm{d} \tau, $$
where
$$ \mathscr{L}(\bullet)=\frac{\partial}{\partial t}(\bullet)+\sum_{i} f_{i} \frac{\partial}{\partial x_{i}}(\bullet) $$Substituting into $\eqref{eq:ode-integral}$, we obtain $$ \begin{aligned} \mathbf{x}(t) &=\mathbf{x}\left(t_{0}\right)+\int_{t_{0}}^{t}\left[\mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right)+\int_{t_{0}}^{\tau} \mathscr{L} \mathbf{f}\left(\mathbf{x}\left(\tau^{\prime}\right), \tau^{\prime}\right) \mathrm{d} \tau^{\prime}\right] \mathrm{d} \tau \\ &=\mathbf{x}\left(t_{0}\right)+\mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right)\left(t-t_{0}\right)+\int_{t_{0}}^{t} \int_{t_{0}}^{\tau} \mathscr{L} \mathbf{f}\left(\mathbf{x}\left(\tau^{\prime}\right), \tau^{\prime}\right) \mathrm{d} \tau^{\prime} \mathrm{d} \tau \end{aligned} $$
Repearing the process $n$ times we obtain: $$ \begin{array}{l} \mathbf{x}(t) & =\mathbf{x}\left(t_{0}\right)+\mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right)\left(t-t_{0}\right)+\frac{1}{2 !} \mathscr{L} \mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right)\left(t-t_{0}\right)^{2} \\ & \quad+\frac{1}{3 !} \mathscr{L}^{2} \mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right)\left(t-t_{0}\right)^{3}+\cdots \end{array} $$
$$ \mathbf{r}_{n}(t)=\int_{t_{0}}^{t} \cdots \int_{t_{0}}^{\tau} \mathscr{L}^{n} \mathbf{f}(\mathbf{x}(\tau), \tau) \mathrm{d} \tau^{n+1} $$For an SDE of the integral form $$ \begin{equation} \mathbf{x}(t)=\mathbf{x}\left(t_{0}\right)+\int_{t_{0}}^{t} \mathbf{f}(\mathbf{x}(\tau), \tau) \mathrm{d} \tau+\int_{t_{0}}^{t} \mathbf{L}(\mathbf{x}(\tau), \tau) \mathrm{d} \beta(\tau), \label{eq:sde-integral} \end{equation} $$
we can analogously compute Ito differentials of $\mathbf{f}(\mathbf{x}(\tau), \tau)$ and $\mathbf{L}(\mathbf{x}(\tau), \tau)$, obtain their integral form, and substitute back into $\eqref{eq:sde-integral}$
$$ \begin{array}{l} \mathbf{x}(t)=\mathbf{x}\left(t_{0}\right)+\mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right)\left(t-t_{0}\right)+\mathbf{L}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right)\left(\beta(t)-\beta\left(t_{0}\right)\right) \\ \quad+\int_{t_{0}}^{t} \int_{t_{0}}^{\tau} \mathscr{L}_{t} \mathbf{f}(\mathbf{x}(\tau), \tau) \mathrm{d} \tau \mathrm{d} \tau+\sum_{j} \int_{t_{0}}^{t} \int_{t_{0}}^{\tau} \mathscr{L}_{\beta, j} \mathbf{f}(\mathbf{x}(\tau), \tau) \mathrm{d} \beta_{j}(\tau) \mathrm{d} \tau \\ \quad+\int_{t_{0}}^{t} \int_{t_{0}}^{\tau} \mathscr{L}_{t} \mathbf{L}(\mathbf{x}(\tau), \tau) \mathrm{d} \tau \mathrm{d} \beta(\tau) \\ \quad+\sum_{j} \int_{t_{0}}^{t} \int_{t_{0}}^{\tau} \mathscr{L}_{\beta, j} \mathbf{L}(\mathbf{x}(\tau), \tau) \mathrm{d} \beta_{j}(\tau) \mathrm{d} \mathbf{\beta}(\tau) \end{array} $$This is the basis for most of the methods we mention.
From the previous derivation, simply take $$ \mathbf{x}(t)=\mathbf{x}\left(t_{0}\right)+\mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right)\left(t-t_{0}\right)+\mathbf{L}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right)\left(\beta(t)-\beta\left(t_{0}\right)\right), $$
resulting in the following update rule (starting at $\hat{\mathbf{x}}(t_0) \sim p(\mathbf{x}(t_0))$:
Strong order: 0.5, weak order 1
But we ignored a term of order $\mathrm{d}t^{1/2}$. Namely $\mathrm{d} \beta_{j}(\tau) \mathrm{d} \mathbf{\beta}(\tau)$ if of order $\mathrm{d}t^{1/2}$ when integrated as above.
Further expansion of the term $$ \sum_{j} \int_{t_{0}}^{t} \int_{t_{0}}^{\tau} \mathscr{L}_{\beta, j} \mathbf{L}(\mathbf{x}(\tau), \tau) \mathrm{d} \beta_{j}(\tau) \mathrm{d} \mathbf{\beta}(\tau) $$
yields $$ \begin{aligned} \mathbf{x}(t)=& \mathbf{x}\left(t_{0}\right)+\mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right)\left(t-t_{0}\right)+\mathbf{L}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right)\left(\boldsymbol{\beta}(t)-\boldsymbol{\beta}\left(t_{0}\right)\right) \\ &+\sum_{j} \mathscr{L}_{\beta, j} \mathbf{L}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right) \int_{t_{0}}^{t} \int_{t_{0}}^{\tau} \mathrm{d} \beta_{j}(\tau) \mathrm{d} \boldsymbol{\beta}(\tau)+\text { remainder. } \end{aligned} $$
This approximation gives us the Milstein discretisation scheme
1.Jointly draw a Brownian motion increment and the iterated Ito integral of it $$ \begin{aligned} \Delta \boldsymbol{\beta}_{k} &=\boldsymbol{\beta}\left(t_{k+1}\right)-\boldsymbol{\beta}\left(t_{k}\right) \\ \Delta \boldsymbol{\chi}_{v, k} &=\int_{t_{k}}^{t_{k+1}} \int_{t_{k}}^{\tau} \mathrm{d} \beta_{j}(\tau) \mathrm{d} \boldsymbol{\beta}(\tau) \end{aligned} $$
Strong order: 1, weak order: 1
In this case we can compute the iterated integral: $$ \int_{t_{0}}^{t} \int_{t_{0}}^{\tau} \mathrm{d} \beta(\tau) \mathrm{d} \beta(\tau)=\frac{1}{2}\left[\left(\beta(t)-\beta\left(t_{0}\right)\right)^{2}-q\left(t-t_{0}\right)\right] $$
This follows from the fact that is derived earlier in the book (p.46) $$ \int_{t_0}^{t} \beta(t) \mathrm{d} \beta(t) = -\frac{1}{2}q(t-t_0) + \frac{1}{2}\big( \beta^2(t) - \beta^2(t_0)\big) $$
In fact, Ito showed that $$ \begin{aligned} n ! \int_{t_{0}}^{t} \int_{t_{0}}^{\tau_{n}} \cdots \int_{t_{0}}^{\tau_{2}} \mathrm{~d} \beta\left(\tau_{1}\right) & \mathrm{d} \beta\left(\tau_{2}\right) \ldots \mathrm{d} \beta\left(\tau_{n}\right) \\ &=q^{n / 2}\left(t-t_{0}\right)^{n / 2} \mathrm{H}_{n}\left(\frac{\beta(t)-\beta\left(t_{0}\right)}{\sqrt{q\left(t-t_{0}\right)}}\right), \end{aligned} $$
Consider the scalar version of the Black-Scholes equation: $$ \mathrm{d}x = \mu x \mathrm{d}t + \sigma x \mathrm{d}\beta, $$ where $\mu$ is the drift constant, $\mathrm{d}\beta$ is the Brownian motion increment.
From Example 4.7 in the book, we have that $$ x_t = \exp\bigg( \big( \mu - \frac{1}{2} \sigma^2 \big) t + \sigma \beta(t) \bigg) x_0, $$ which we can use to compare the errors by different discretisation schemes.
plot_paths()
plot_discretisation(chosen_brownian_path_idx=6, R=10)
Runge-Kutta:
Consider the following ODE:
$$ \frac{\mathrm{d} \mathbf{x}(t)}{\mathrm{d} t}=\mathbf{f}(\mathbf{x}(t), t), \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0} $$and its Taylor expansion up to $(\Delta t)^2$ $$ \begin{align} \mathbf{x}\left(t_{0}+\Delta t\right) &\approx \mathbf{x}\left(t_{0}\right)+\mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right) \Delta t \nonumber\\ & \quad +\frac{1}{2}\left\{\frac{\partial}{\partial t} \mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right) +\sum_{i} f_{i}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right) \frac{\partial}{\partial x_{i}} \mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right) \right\}(\Delta t)^2 . \label{eq:rk-taylor-expand} \end{align} $$
The above has got derivatives, but we are seeking to replace the term involving the derivatives with expressions involving evaluations of $\mathbf{f}(\cdot, \cdot)$ at various points.
We are looking for something of the form:
$$ \begin{aligned} \mathbf{x}\left(t_{0}+\Delta t\right) & \approx \mathbf{x}\left(t_{0}\right)+a \mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right) \Delta t \\ & \quad +b \mathbf{f}\left(\mathbf{x}\left(t_{0}\right)+c \mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right) \Delta t, t_{0}+d \Delta t\right) \Delta t, \end{aligned} $$where if we linearise the last term around $\mathbf{f}(\mathbf{x}(t_0), t_0)$ with the increments chosen as follows:
$$ \begin{array}{l} \mathbf{f}\left(\mathbf{x}\left(t_{0}\right)+c \mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right) \Delta t, t_{0}+d \Delta t\right) \approx \mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right) \\ \quad+c\left(\sum_{i} f_{i}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right) \frac{\partial}{\partial x_{i}} \mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right)\right) \Delta t+d \frac{\partial \mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right)}{\partial t} \Delta t \end{array} $$which gives
$$ \begin{array}{l} \mathbf{x}\left(t_{0}+\Delta t\right) \approx \mathbf{x}\left(t_{0}\right)+(a+b) \mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right) \Delta t \\ \quad+b\left\{c \sum_{i} f_{i}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right) \frac{\partial}{\partial x_{i}} \mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right)+d \frac{\partial \mathbf{f}\left(\mathbf{x}\left(t_{0}\right), t_{0}\right)}{\partial t}\right\}(\Delta t)^{2} \end{array} $$and can be pattern matched with $\eqref{eq:rk-taylor-expand}$ to give $$ a = \frac{1}{2}, \quad b=\frac{1}{2}, \quad c = 1, \quad d = 1 $$
Coming up with these is an art form!
where $\tilde{t}_{i}=t_{k}+c_{i} \Delta t$ and $\tilde{\mathbf{x}}_{i}=\hat{\mathbf{x}}\left(t_{k}\right)+\sum_{j=1}^{s} A_{i, j} \mathbf{f}\left(\tilde{\mathbf{x}}_{j}, \tilde{t}_{j}\right) \Delta t$.
The corresponding Butcher's tableau is: $$ \begin{array}{c|cccc} c_{1} & A_{1,1} & & & \\ c_{2} & A_{2,1} & A_{2,2} & & \\ \vdots & \vdots & & \ddots & \\ c_{s} & A_{s, 1} & A_{s, 2} & \ldots & A_{s, s} \\ \hline & \alpha_{1} & \alpha_{2} & \ldots & \alpha_{s} \end{array} $$
The corresponding Butcher's tableau is $$ \begin{array}{c|cccc} \color{blue}{0} & & & & \\ \color{blue}{\frac{1}{2}} & \color{green}{\frac{1}{2}} & & & \\ \color{blue}{\frac{1}{2}} & 0 & \color{green}{\frac{1}{2}} & & \\ \color{blue}{1} & 0 & 0 & \color{green}{1} & \\ \hline & \color{red}{\frac{1}{6}} & \color{red}{\frac{1}{3}} & \color{red}{\frac{1}{3}} & \color{red}{\frac{1}{6}} \end{array} $$
On each step $k$, approximate the solution trajectory as follows: $\hat{\mathbf{x}}\left(t_{k+1}\right)=\hat{\mathbf{x}}\left(t_{k}\right)+\sum_{i} \alpha_{i} \mathbf{f}\left(\tilde{\mathbf{x}}_{i}^{(0)}, t_{k}+c_{i}^{(0)} \Delta t\right) \Delta t$ $$ +\sum_{i, n}\left(\gamma_{i}^{(1)} \Delta \beta_{k}^{(n)}+\gamma_{i}^{(2)} \sqrt{\Delta t}\right) \mathbf{L}_{n}\left(\tilde{\mathbf{x}}_{i}^{(n)}, t_{k}+c_{i}^{(1)} \Delta t\right) $$ with the supporting values $$ \begin{aligned} \tilde{\mathbf{x}}_{i}^{(0)}=\hat{\mathbf{x}}\left(t_{k}\right) &+\sum_{j} A_{i, j}^{(0)} \mathbf{f}\left(\tilde{\mathbf{x}}_{j}^{(0)}, t_{k}+c_{j}^{(0)} \Delta t\right) \Delta t \\ &+\sum_{j, l} B_{i, j}^{(0)} \mathbf{L}_{l}\left(\tilde{\mathbf{x}}_{j}^{(l)}, t_{k}+c_{j}^{(1)} \Delta t\right) \Delta \beta_{k}^{(l)} \\ \tilde{\mathbf{x}}_{i}^{(n)}=\hat{\mathbf{x}}\left(t_{k}\right) &+\sum_{j} A_{i, j}^{(1)} \mathbf{f}\left(\tilde{\mathbf{x}}_{j}^{(0)}, t_{k}+c_{j}^{(0)} \Delta t\right) \Delta t \\ &+\sum_{j, l} B_{i, j}^{(1)} \mathbf{L}_{l}\left(\tilde{\mathbf{x}}_{j}^{(l)}, t_{k}+c_{j}^{(1)} \Delta t\right) \frac{\Delta \chi_{k}^{(l, n)}}{\sqrt{\Delta t}} \end{aligned} $$ for $i=1,2, \ldots, s$ and $n=1,2, \ldots, S$. The increments in Algorithm 8.12 are given by the Itô integrals: $$ \begin{aligned} \Delta \beta_{k}^{(i)} &=\int_{t_{k}}^{t_{k+1}} \mathrm{~d} \beta_{i}(\tau) \text { and } \\ \Delta \chi_{k}^{(i, j)} &=\int_{t_{k}}^{t_{k+1}} \int_{t_{k}}^{\tau_{2}} \mathrm{~d} \beta_{i}\left(\tau_{1}\right) \mathrm{d} \beta_{j}\left(\tau_{2}\right), \end{aligned} $$ for $i, j=1,2, \ldots, S .$ The increments $\Delta \beta_{k}^{(i)}$ are normally distributed random variables such that jointly $\Delta \boldsymbol{\beta}_{k} \sim \mathrm{N}(\boldsymbol{0}, \mathbf{Q} \Delta t)$. The iterated stochastic Itô integrals $\Delta \chi_{k}^{(i, j)}$ are trickier. For these methods, when $i=j$ the multiple Itô integrals can be rewritten as $$ \Delta \chi_{k}^{(i, i)}=\frac{1}{2}\left(\left[\Delta \beta_{k}^{(i)}\right]^{2}-Q_{i, i} \Delta t\right) $$
Example: $$ \ddot{x}=f(x)-\eta b^{2}(x) \dot{x}+b(x) w(t), $$ which can be rewritten into $$ \begin{array}{l} \mathrm{d} x(t)=\mathrm{d} v(t) \mathrm{d} t \\ \mathrm{~d} v(t)=-\eta b^{2}(x(t)) v(t) \mathrm{d} t+f(x(t)) \mathrm{d} t+b(x(t)) \mathrm{d} \beta(t) . \end{array} $$
As many evaluations as E-M but often performs better; time-reversible;
By considering biased Brownian motion whose final point has density as
$$ h(\tilde{\boldsymbol{\beta}}(T)) \propto \exp \left(\psi(\tilde{\boldsymbol{\beta}}(T))-\frac{1}{2 T}\|\tilde{\boldsymbol{\beta}}(T)\|^{2}\right) $$we have
$$ \frac{\mathrm{d} P_{\mathbf{x}}}{\mathrm{d} P_{\tilde{\beta}}} \propto \exp \left(-\int_{0}^{T} \phi(\boldsymbol{\beta}) \mathrm{d} t\right) \leq 1, $$where $$ \phi(\boldsymbol{\beta})=\frac{1}{2}\left[\|\mathbf{f}(\boldsymbol{\beta})\|^{2}+(\nabla \cdot \mathbf{f}(\boldsymbol{\beta}))\right]-c $$ and we also assume that $\phi(\boldsymbol{\beta}) < M$
If all of the $x_i$'s lie above corresponding $\phi(\tilde{\beta}(t_i))$, then fill in with Brownian bridges between the points and accept.