Chapter 5 - Probability distributions and statistics of
SDEs

CSML Reading group

Yannis Zachos

January 29, 2021

1/13



© Important definitions
© SDE solution formulations
© Probability density of solution

@ Moments of solution
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Important notions |

(Q,F,P) well-defined probability space.
x(t): stochastic process.

@ An Itb process solves the following SDE starting at x(0):
dx = f(x, t)dt + L(x,t)d3

@ The available information at time t about process x(t) denoted by
{F:} CFis called a filtration.

o x(t) is called a martingale iff it has bounded expectation and it holds
that E[x(t)|Fs] = x(s) Vt >s.

@ x(t) is a Markov process iff it is true that
p(x(8)\F5) = p(x(8)|x(s)) Ve = 5.
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Important notions |l

@ The generator of an It process is a differential operator

. . 2(
)= 5 Wi+ 33 (5L ) e 0L (e,

i

@ A SDE solution is weak iff we can construct B(t), %(t) such that the
pair is a solution to the SDE.

@ A solution to the martingale problem (MP) for generator A is a
Markov process x(t) for which

h(x()) — /0 " Ah(x(s))ds

is a martingale.
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Existence and uniqueness of SDE solution

dx = f(x, t)dt + L(x,t)d3

Theorem:
x(t) weak solution iff x(t) solves the MP.

Corollary:

existence of weak solution = existence of some solution to MP
uniqueness in law = existence of at most one solution to MP

Equivalence between weak solution and MP formulations of SDE.

@ Benefits of using martingale formulation: theory of weak convergence,
regular conditional probabilities, localisation.
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Kolmogorov's forward equation

@ We know solution at time tp in the form of p(x(tp)).
@ What about time t > t3?

e Forward Kolmogorov equation: p(x(t)) of the solution solves the
IVP with initial condition p(x(to)):

‘9'3 Za—x[f x, t)p(x(t))] +
’Za {[L x, t)QL(x, t)]p(x(t))}

@ This looks similar to applying the generator A to p(x(t)).

Jp
ot
with A* adjoint operator of A.
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Applications of forward equation |

o Example: The SDE dx = df with constant diffusion g = 2D reduces
to the diffusion equation

62
= D5z (9X2

@ whose solution given the inltlal condition p(x(0)) = d(x) is
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Result for time-independent processes

@ For time-independent processes like
dx = f(x)dt + L(x)d3
with diffusion matrix @ = gl the forward equation satisfies

ap(x(t))
o =0.

@ If we can transform the SDE into
1
dx = —EVv(x)dt + L(x)dg

via f(x) = —Vv(x) we can then use the following result:
@ Theorem: The solution to the time-independent forward equation is

L ew(-v(x)/a)
PO = Texp(—v(x)fq)ax”

which looks like the Boltzmann-Gibbs measure.
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Applications of forward equation Il

o Example: The Ornstein-Uhlenbeck process is
dx = —Axdt + df3

with x(0) = xo.
o Let v(x) = Ax? since —3Vv(x) = —Ax. Therefore, the probability of

the solution is
Ax2
p(x) o exp )

which resembles a Gaussian distribution with zero mean and gq/2\
variance.

@ Another example of applying the forward equation is found in
“Stochastic modelling of urban structure”.
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Kolmogorov's backward equation

@ We have seen how the solution probability propagates forward in time.
@ How can we compute moments of the solution?

e Theorem: u(x,t) = E,[h(x(t))] solves the following initial value
problem with initial condition u(x,0):

IE[N(x(1))]
PN 4w anxen)
where
A0 = X 52600+ 5 3 (5o ) Lx 0L (x. )

)

@ Great! We can now use this to compute summary statistics of the Ito
process.
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Moments of It6 processes

@ Backward Kolmogorov equation allows us to compute mean via
h(x(t)) = x, and covariance h(x, t) = x,x, — E[x,(t)]E[x,(t)],
respectively.

@ Mean m solves

dm
ke E[f(x,t)]
while the covariance P solves
% = E[f(x, t)(x—m) T] +E[(x— m)fT(x, t)]+E[L(x, t)QLT(x, t)]

@ We need access to p(x(t)) via the forward Kolmogorov equation
which we cannot always solve.

@ Free lunch only if solution to forward equation is Gaussian.
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Example: Ornstein-Uhlenbeck process: dx = —Axdt + d3 with
x(0) = xo. We have

dm

— =E[-M = -Am
P
% = 2E[-\(x — m)?] + E[q] = —2)\P + q.
Example: dx = sin(x)dt + d has
dm 3 x°
P E[sin(x)] =~ E[x — 3l + =l +...]

Apart from p(x(t)) we also need to compute higher order moments.

The computation cost of the n-th moment for a d-dimensional state
x is O(d™) and may require us to compute expectation over infinite
number of moment equations in the case of h(x) = x".
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[t6 processes as Markov processes

@ |tG processes are Markovian and are characterised by their transition
densities p(x(t)|x(s)).

e Forward Kolmogorov equation: p(x(t)|y(s)) solves the following
PDE with t > s and initial condition §(x(s) — y(s)):

PN _ 4 pix(e)y(s))

@ Same applies for the backward Kolmogorov equation.

@ We can now factorise the joint distribution of the solution at arbitrary
time points (where SDE can be discretised) as

s'

p(xtm . XtT —P(Xto H tk ‘X tk 1))
k=1
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