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Important notions I

(Ω,F,P) well-defined probability space.
x(t): stochastic process.

An Itô process solves the following SDE starting at x(0):

dx = f (x , t)dt + L(x , t)dβ

The available information at time t about process x(t) denoted by
{Ft} ⊆ F is called a filtration.

x(t) is called a martingale iff it has bounded expectation and it holds
that E[x(t)|Fs ] = x(s) ∀t ≥ s.

x(t) is a Markov process iff it is true that
p(x(t)|Fs) = p(x(t)|x(s)) ∀t ≥ s.
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Important notions II

The generator of an Itô process is a differential operator

At(•) =
∂(•)

∂t
+
∑
i

∂(•)

∂xi
fi (x , t)+

1

2

∑
i ,j

(
∂2(•)

∂xi∂xj

)
[L(x , t)QLT (x , t)]i ,j

A SDE solution is weak iff we can construct β̂(t), x̂(t) such that the
pair is a solution to the SDE.

A solution to the martingale problem (MP) for generator A is a
Markov process x(t) for which

h(x(t))−
∫ t

0
Ah(x(s))ds

is a martingale.
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Existence and uniqueness of SDE solution

dx = f (x , t)dt + L(x , t)dβ

Theorem:

x(t) weak solution iff x(t) solves the MP.

Corollary:

existence of weak solution ≡ existence of some solution to MP
uniqueness in law ≡ existence of at most one solution to MP

Equivalence between weak solution and MP formulations of SDE.

Benefits of using martingale formulation: theory of weak convergence,
regular conditional probabilities, localisation.
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Kolmogorov’s forward equation

We know solution at time t0 in the form of p(x(t0)).

What about time t ≥ t0?

Forward Kolmogorov equation: p(x(t)) of the solution solves the
IVP with initial condition p(x(t0)):

∂p(x(t))

∂t
= −

∑
i

∂

∂xi
[fi (x , t)p(x(t))] +

1

2

∑
i ,j

∂2

∂xi∂xj
{[L(x , t)QL(x , t)]ijp(x(t))}

This looks similar to applying the generator A to p(x(t)).

∂p

∂t
= A∗p

with A∗ adjoint operator of A.
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Applications of forward equation I

Example: The SDE dx = dβ with constant diffusion q = 2D reduces
to the diffusion equation

∂p
∂t = D ∂2p

∂x2
.

whose solution given the initial condition p(x(0)) = δ(x) is

p(x(t)) =
1√

4πDt
exp

(
− x2

4Dt

)
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Result for time-independent processes

For time-independent processes like

dx = f (x)dt + L(x)dβ

with diffusion matrix Q = qI the forward equation satisfies

∂p(x(t))

∂t
= 0.

If we can transform the SDE into

dx = −1

2
∇v(x)dt + L(x)dβ

via f (x) = −∇v(x) we can then use the following result:

Theorem: The solution to the time-independent forward equation is

p(x) =
exp(−v(x)/q)∫
exp(−v(x)/q)dx

,

which looks like the Boltzmann-Gibbs measure.
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Applications of forward equation II

Example: The Ornstein-Uhlenbeck process is

dx = −λxdt + dβ

with x(0) = x0.

Let v(x) = λx2 since −1
2∇v(x) = −λx . Therefore, the probability of

the solution is

p(x) ∝ exp

(
−λx

2

q

)
,

which resembles a Gaussian distribution with zero mean and q/2λ
variance.

Another example of applying the forward equation is found in
“Stochastic modelling of urban structure”.
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Kolmogorov’s backward equation

We have seen how the solution probability propagates forward in time.

How can we compute moments of the solution?

Theorem: u(x , t) = Ex [h(x(t))] solves the following initial value
problem with initial condition u(x , 0):

∂Ex [h(x(t))]

∂t
= A Ex [h(x(t))],

where

A(•) =
∑
i

∂(•)

∂xi
fi (x , t) +

1

2

∑
i ,j

(
∂2(•)

∂xi∂xj

)
[L(x , t)QLT (x , t)]i ,j

Great! We can now use this to compute summary statistics of the Itô
process.
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Moments of Itô processes

Backward Kolmogorov equation allows us to compute mean via
h(x(t)) = xu and covariance h(x , t) = xuxv − E[xu(t)]E[xv (t)],
respectively.

Mean m solves
dm
dt

= E[f (x , t)]

while the covariance P solves

dP
dt

= E[f (x , t)(x−m)T ]+E[(x−m)f T (x , t)]+E[L(x , t)QLT (x , t)]

We need access to p(x(t)) via the forward Kolmogorov equation
which we cannot always solve.

Free lunch only if solution to forward equation is Gaussian.
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Examples

Example: Ornstein-Uhlenbeck process: dx = −λxdt + dβ with
x(0) = x0. We have

dm

dt
= E[−λx ] = −λm

dP

dt
= 2E[−λ(x −m)2] + E[q] = −2λP + q.

Example: dx = sin(x)dt + dβ has

dm

dt
= E[sin(x)] ≈ E[x − x3

3!
+

x5

5!
+ . . . ].

Apart from p(x(t)) we also need to compute higher order moments.

The computation cost of the n-th moment for a d-dimensional state
x is O(dn) and may require us to compute expectation over infinite
number of moment equations in the case of h(x) = xn.
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Itô processes as Markov processes

Itô processes are Markovian and are characterised by their transition
densities p(x(t)|x(s)).

Forward Kolmogorov equation: p(x(t)|y(s)) solves the following
PDE with t ≥ s and initial condition δ(x(s)− y(s)):

∂p(x(t)|y(s))

∂t
= A∗ p(x(t)|y(s))

Same applies for the backward Kolmogorov equation.

We can now factorise the joint distribution of the solution at arbitrary
time points (where SDE can be discretised) as

p(xt0 , . . . , xtT ) = p(xt0)
T∏

k=1

p(x(tk)|x(tk−1))
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