Chapter 5 - Probability distributions and statistics of SDEs

CSML Reading group

Yannis Zachos

January 29, 2021

Outline

- Important definitions
- SDE solution formulations
- Probability density of solution
- 4 Moments of solution

Important notions I

 $(\Omega, \mathbb{F}, \mathcal{P})$ well-defined probability space.

x(t): stochastic process.

• An Itô process solves the following SDE starting at x(0):

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + \mathbf{L}(\mathbf{x}, t)d\boldsymbol{\beta}$$

- The available information at time t about process $\mathbf{x}(t)$ denoted by $\{\mathcal{F}_t\} \subseteq \mathbb{F}$ is called a *filtration*.
- $\mathbf{x}(t)$ is called a *martingale* iff it has bounded expectation and it holds that $\mathbb{E}[\mathbf{x}(t)|\mathcal{F}_s] = \mathbf{x}(s) \ \forall t \geq s$.
- $\mathbf{x}(t)$ is a Markov process iff it is true that $p(\mathbf{x}(t)|\mathcal{F}_s) = p(\mathbf{x}(t)|\mathbf{x}(s)) \ \forall t \geq s.$

Important notions II

• The generator of an Itô process is a differential operator

$$\mathcal{A}_{t}(\cdot) = \frac{\partial(\cdot)}{\partial t} + \sum_{i} \frac{\partial(\cdot)}{\partial x_{i}} f_{i}(\mathbf{x}, t) + \frac{1}{2} \sum_{i,j} \left(\frac{\partial^{2}(\cdot)}{\partial x_{i} \partial x_{j}} \right) [\mathbf{L}(\mathbf{x}, t) \mathbf{Q} \mathbf{L}^{T}(\mathbf{x}, t)]_{i,j}$$

- A SDE solution is weak iff we can construct $\hat{\beta}(t)$, $\hat{x}(t)$ such that the pair is a solution to the SDE.
- A solution to the martingale problem (MP) for generator \mathcal{A} is a Markov process $\mathbf{x}(t)$ for which

$$h(x(t)) - \int_0^t Ah(x(s))ds$$

is a martingale.

Existence and uniqueness of SDE solution

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t)dt + \mathbf{L}(\mathbf{x}, t)d\boldsymbol{\beta}$$

Theorem:

x(t) weak solution iff x(t) solves the MP.

Corollary:

existence of weak solution \equiv existence of some solution to MP uniqueness in law \equiv existence of at most one solution to MP

- Equivalence between weak solution and MP formulations of SDE.
- Benefits of using martingale formulation: theory of weak convergence, regular conditional probabilities, localisation.

Kolmogorov's forward equation

- We know solution at time t_0 in the form of $p(x(t_0))$.
- What about time $t \ge t_0$?
- Forward Kolmogorov equation: p(x(t)) of the solution solves the IVP with initial condition $p(x(t_0))$:

$$\frac{\partial p(\mathbf{x}(t))}{\partial t} = -\sum_{i} \frac{\partial}{\partial x_{i}} \left[f_{i}(\mathbf{x}, t) p(\mathbf{x}(t)) \right] + \frac{1}{2} \sum_{i, j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \left\{ \left[\mathbf{L}(\mathbf{x}, t) \mathbf{Q} \mathbf{L}(\mathbf{x}, t) \right]_{ij} p(\mathbf{x}(t)) \right\}$$

• This looks similar to applying the generator A to p(x(t)).

$$\frac{\partial p}{\partial t} = \mathcal{A}^* p$$

with \mathcal{A}^* adjoint operator of \mathcal{A} .

Applications of forward equation I

• **Example**: The SDE $dx = d\beta$ with constant diffusion q = 2D reduces to the diffusion equation

$$\frac{\partial p}{\partial t} = D \frac{\partial^2 p}{\partial x^2}.$$

• whose solution given the initial condition $p(x(0)) = \delta(x)$ is

$$p(x(t)) = \frac{1}{\sqrt{4\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right)$$

Result for time-independent processes

For time-independent processes like

$$d\mathbf{x} = \mathbf{f}(\mathbf{x})dt + \mathbf{L}(\mathbf{x})d\boldsymbol{\beta}$$

with diffusion matrix Q = qI the forward equation satisfies

$$\frac{\partial p(\mathbf{x}(t))}{\partial t} = 0.$$

If we can transform the SDE into

$$d\mathbf{x} = -\frac{1}{2}\nabla v(\mathbf{x})dt + \mathbf{L}(\mathbf{x})d\boldsymbol{\beta}$$

via $f(x) = -\nabla v(x)$ we can then use the following result:

• Theorem: The solution to the time-independent forward equation is

$$p(x) = \frac{\exp(-v(x)/q)}{\int \exp(-v(x)/q)dx},$$

which looks like the Boltzmann-Gibbs measure.

Applications of forward equation II

• Example: The Ornstein-Uhlenbeck process is

$$dx = -\lambda x dt + d\beta$$

with $x(0) = x_0$.

• Let $v(x) = \lambda x^2$ since $-\frac{1}{2}\nabla v(x) = -\lambda x$. Therefore, the probability of the solution is

$$p(x) \propto \exp\left(-\frac{\lambda x^2}{q}\right),$$

which resembles a Gaussian distribution with zero mean and $q/2\lambda$ variance.

 Another example of applying the forward equation is found in "Stochastic modelling of urban structure".

Kolmogorov's backward equation

- We have seen how the solution probability propagates forward in time.
- How can we compute moments of the solution?
- **Theorem**: $u(x,t) = \mathbb{E}_x[h(x(t))]$ solves the following initial value problem with initial condition u(x,0):

$$\frac{\partial \mathbb{E}_{\mathsf{x}}[h(\mathbf{x}(t))]}{\partial t} = \mathcal{A} \; \mathbb{E}_{\mathsf{x}}[h(\mathbf{x}(t))],$$

where

$$\mathcal{A}(\cdot) = \sum_{i} \frac{\partial(\cdot)}{\partial x_{i}} f_{i}(\mathbf{x}, t) + \frac{1}{2} \sum_{i, i} \left(\frac{\partial^{2}(\cdot)}{\partial x_{i} \partial x_{j}} \right) [\mathbf{L}(\mathbf{x}, t) \mathbf{Q} \mathbf{L}^{T}(\mathbf{x}, t)]_{i, j}$$

 Great! We can now use this to compute summary statistics of the Itô process.

Moments of Itô processes

- Backward Kolmogorov equation allows us to compute mean via $h(\mathbf{x}(t)) = x_u$ and covariance $h(\mathbf{x}, t) = x_u x_v \mathbb{E}[x_u(t)]\mathbb{E}[x_v(t)]$, respectively.
- Mean *m* solves

$$\frac{d\mathbf{m}}{dt} = \mathbb{E}[\mathbf{f}(\mathbf{x},t)]$$

while the covariance \boldsymbol{P} solves

$$\frac{d\mathbf{P}}{dt} = \mathbb{E}[\mathbf{f}(\mathbf{x},t)(\mathbf{x}-\mathbf{m})^T] + \mathbb{E}[(\mathbf{x}-\mathbf{m})\mathbf{f}^T(\mathbf{x},t)] + \mathbb{E}[\mathbf{L}(\mathbf{x},t)\mathbf{Q}\mathbf{L}^T(\mathbf{x},t)]$$

- We need access to p(x(t)) via the forward Kolmogorov equation which we cannot always solve.
- Free lunch only if solution to forward equation is Gaussian.

Examples

• **Example**: Ornstein-Uhlenbeck process: $dx = -\lambda x dt + d\beta$ with $x(0) = x_0$. We have

$$\frac{dm}{dt} = \mathbb{E}[-\lambda x] = -\lambda m$$

$$\frac{dP}{dt} = 2\mathbb{E}[-\lambda(x-m)^2] + \mathbb{E}[q] = -2\lambda P + q.$$

• Example: $dx = \sin(x)dt + d\beta$ has

$$\frac{dm}{dt} = \mathbb{E}[\sin(x)] \approx \mathbb{E}[x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots].$$

- Apart from p(x(t)) we also need to compute higher order moments.
- The computation cost of the *n*-th moment for a *d*-dimensional state x is $\mathcal{O}(d^n)$ and may require us to compute expectation over infinite number of moment equations in the case of $h(x) = x^n$.

Itô processes as Markov processes

- Itô processes are Markovian and are characterised by their transition densities p(x(t)|x(s)).
- Forward Kolmogorov equation: p(x(t)|y(s)) solves the following PDE with $t \ge s$ and initial condition $\delta(x(s) y(s))$:

$$\frac{\partial p(\mathbf{x}(t)|\mathbf{y}(s))}{\partial t} = \mathcal{A}^* \ p(\mathbf{x}(t)|\mathbf{y}(s))$$

- Same applies for the backward Kolmogorov equation.
- We can now factorise the joint distribution of the solution at arbitrary time points (where SDE can be discretised) as

$$p(\mathbf{x}_{t_0}, \dots, \mathbf{x}_{t_T}) = p(\mathbf{x}_{t_0}) \prod_{k=1}^T p(\mathbf{x}(t_k) | \mathbf{x}(t_{k-1}))$$