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.1 Calculus for the base kernel k

All experiments were performed using the base kernel

k(x,x�) =
1

(1 + α1�x�22)(1 + α1�x��22)
exp

�
−
�x− x��22

2α2
2

�
.

Below we provide formulae for the derivatives of the base kernel that are required in our
method. Here x ∈ R1×d is a row vector.
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4α2
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Tx�

(1 + α1�x�22)(1 + α1�x��22)
+

2α1(x− x�)Tx�

α2
2(1 + α1�x��22)

−
2α1xT (x− x�)

α2
2(1 + α1�x�22)

+
I

α2
2

−
(x− x�)T (x− x�)

α4
2

�
k(x,x�)

The final term, ∇x∇x�k(x,x�) is a d× d matrix with (i, j)th element (∂/∂xi)∇x�
j
k(x,x�).
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.2 Diagnostics for the synthetic illustration
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Figure S1: Illustration on a synthetic integration problem. (a) Determining the kernel
length-scale hyper-parameter α2 = 1 by minimising the predictive mean square error (MSE).
(α1 = 0.1 was selected similarly, not shown here.) (b) Determining an appropriate ratio m/n

of training to test samples, again by consideration of the predictive MSE. (c) Examining the
effect of using multiple, randomly selected sample splits. (d) Comparing the sample-splitting
estimator with the simplified estimator. [Here the sample-splitting estimator uses just one
split of the samples.] In each of (a-d) we considered 100 independent realisations of the
sampling process. The number of samples was taken to be n = 50 throughout.
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.3 Performance in higher dimensions
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(a) Relative variance of estimators (d = 3)
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Figure S2: Illustration on a synthetic integration problem. (continued). Empirical assess-
ment of asymptotic properties. Here we consider examples with dimension (a) d = 3, (b)
d = 5. [Riemann sums were not considered for dimensions d > 1 due to the substantial
increase in methodological complexity here.]
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.4 A larger collection of examples

Problem Mean Square Error Notes
f(x) π Arithmetic Mean Riemann Sums ZV Control Variates Control Functionals (Simplified)

C
F
�

sin(πx) N(0, 1) 0.0098± 0.0013 0.0018± 0.00043 0.01± 0.0013 6.9e− 07± 3.4e− 07

sin((x1 + x2 + x3)π/3) N(03×1, I3×3) 0.011± 0.0016 - 0.015± 0.0027 0.0013± 0.00016
sin((x1 + · · ·+ x5)π/5) N(05×1, I5×5) 0.0088± 0.0015 - 0.01± 0.0017 0.0057± 0.00089
sin((x1 + · · ·+ x10)π/10) N(010×1, I10×10) 0.0081± 0.0010 - 5.2± 2.6 0.0078± 0.00099 (a)
exp(−x2

1 − · · ·− x2
10) N(010×1, I10×10) 5.8e− 06± 1.3e− 06 - 0.49± 0.35 3.8e− 06± 4.5e− 07

x N(0, 1) 0.018± 0.0024 0.0054± 0.00088 2.1e− 33± 7.4e− 34 1.6e− 06± 3.8e− 07 (b)
x1 N(03×1, I3×3) 0.022± 0.0037 - 4.8e− 33± 1.1e− 33 0.0036± 0.00063
x2 N(0, 1) 0.059± 0.0093 0.047± 0.0035 3.6e− 33± 1.2e− 33 5.5e− 05± 6.3e− 06
x Γ(5, 1) 0.11± 0.016 0.038± 0.0055 7.1e− 32± 2.3e− 32 0.016± 0.0019

exp(x) N(0, 1) 0.1± 0.013 0.04± 0.005 0.015± 0.0056 0.00019± 2.7e− 05 (c)
x2 sin(πx) N(0, 1) 0.028± 0.0035 0.012± 0.002 0.029± 0.0035 0.00047± 0.00013

x β(2, 2) 0.00076± 0.0001 0.00014± 2.5e− 05 0.00086± 0.00016 7.2e− 11± 2.8e− 11

sin(2πx) β(2, 2) 0.0092± 0.001 0.001± 0.0002 0.017± 0.0036 2.4e− 06± 1e− 06

x 0.5N(−1, 1) + 0.5N(1, 1) 0.043± 0.0055 0.0097± 0.0014 0.0048± 0.00065 6.9e− 05± 1.1e− 05

x2 0.5N(−1, 1) + 0.5N(1, 1) 0.15± 0.026 0.12± 0.01 0.0034± 0.00053 0.00039± 7.7e− 05

C
F
×

sin(πx) Cauchy(0, 1) 0.0095± 0.0013 0.021± 0.0032 0.0093± 0.0013 0.31± 0.035 (d)
x Exp(1) 0.023± 0.0028 0.0087± 0.0013 0.014± 0.0021 5.5± 0.42 (e)
x Non-differentiable 0.00094± 0.00012 0.00012± 1.7e− 05 0.0083± 0.0011 5.7e− 05± 1.5e− 05 (f)

1x>0 N(0, 1) 0.0035± 0.00042 0.0014± 0.00019 0.0022± 0.00028 8e+ 03± 2.1e+ 03 (g)

Table S1: A broad range of examples, some of which are compatible with the CF method (CF �) and some of which are
not (CF ×). In each case the true mean µ(f) is known analytically and we report the mean square error computed over
100 independent realisations. [Here the number of samples was fixed at n = 50. For all examples we employed (simplified)
CF with the hyper-parameters α1 = 0.1, α2 = 1. Riemann sums were not used in the multi-dimensional problems due to
their non-trivial implementation.] Notes: (a) ZV control variates perform poorly since their implementation here requires
us to estimate a 10× 10 covariance matrix from only n = 50 samples. On the other hand, CF offers stability here that is
comparable with the usual arithmetic mean. (b) For these low-dimensional polynomial examples, ZV control variates are
essentially exact. (c) In each of these examples CF offers the most precise estimates. (d) Here f /∈ L2(π), violating our
basic assumption. (e) Here π(0)φ(0) is not forced equal to zero, violating (A1). (f) Here π is not differentiable, violating
the assumption that the gradient function exists. This “non-differentiable” example uses a triangular distribution on [0, 1].
(g) Here f is not differentiable, so in particular f /∈ H+, violating (A5).
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.5 A comparison with extensions of ZV control variates

In this section we consider “zero variance” (ZV) control variates in greater detail and ask
whether they can be extended, by analogy with our control functional method. Firstly we re-
interpret ZV control variates within our general framework: Consider degree J polynomials
φi(x) of the form

φi(x) = ai +
d�

j=1

bi,jxj +
d�

j,k=1

ci,j,kxjxk +
d�

j,k,l=1

di,j,k,lxjxkxl + . . . (1)

with coefficients θi = {ai, bi,j, ci,j,k, . . . }. The polynomial is degree J , so that only the
product of at most J of the components xj can appear on the right hand side of Eqn. 1.
The associated control functional is

ψφ(x) = ∇x · φ(x) + φ(x) · u(x)

=
d�

i=1

�
bi,i +

d�

j=1

ci,j,ixj +
d�

k=1

ci,i,kxk +
d�

j,k=1

di,j,k,ixjxk

+
d�

j,l=1

di,j,i,lxjxl +
d�

k,l=1

di,i,k,lxkxl + . . .

�

+
d�

i=1

�
ai +

d�

j=1

bi,jxj +
d�

j,k=1

ci,j,kxjxk +
d�

j,l,k=1

di,j,k,l,xjxkxl + . . .

�
ui(x). (2)

This can in turn be re-written as θTm(x) where the components {ai, bi,j, ci,j,k, . . . } of θ and
m(x) are identified in the inner product as

ai ↔ ui (3)

bi,i ↔ 1 + xiui (4)

bi,j ↔ xjui (i �= j) (5)

ci,i,i ↔ 2xi + x
2
iui (6)

ci,i,k ↔ xk + xixkui (k �= i) (7)

ci,j,i ↔ xj + xixjui (j �= i) (8)

ci,j,k ↔ xjxkui (j, k �= i) (9)
...

Thus, for fixed polynomial degree J , the ZV estimator converges at super-root-n if and only if
f(x) = c+ψφ(x) for some c ∈ R and some ψφ of the form in Eqn. 2. Except for very special
combinations of f and π, e.g. as detailed in Papamarkou et al. (2014), this condition will not
be satisfied. For example, if X ∼ N(0, 1) then the ZV estimator converges at super-root-n
if and only if f(x) is a polynomial of degree at most J . As such, super-root-n convergence
is not achieved even for “elementary” functions, such as f(x) = sin(πx).
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Rescuing ZV control variates: An extension of the ZV method, not previously proposed
in the literature, would be to take the control functional perspective and let the degree
J of the polynomial increase to infinity as the number of samples n → ∞. In this case
super-root-n convergence can be achieved if and only if f(x) can be approximated by a
sequence of functions from the class {c + ψφ(x) : c ∈ R, ψφ as in Eqn. 2, J ∈ N}. Under
reasonable regularity assumptions, it follows from the Stone-Weierstrass theorem that this
class of functions will be dense in C0(Ω,R), so that super-root-n convergence will be realised
for all f ∈ C0(Ω,R). In this way the ZV method can in principle be rescued. Below we
explore how such an approach could be implemented and compare its performance against
the proposed fully non-parametric control functional method.

Choosing the polynomial degree J: We work in the same setting as the main text,
starting with a dichotomy D0∪D1 of the samples. Based on D0, our challenge is to select an
appropriate polynomial degree J ≡ J(m) and then, conditional on J , to select appropriate
values for the polynomial coefficients θ. Selection of the coefficients θ is standard and
recapped in the section below. Given that it is a priori unclear how J(m) should scale
with m, the number of training samples, the most straight-forward solution is to proceed
retrospectively, fitting polynomials of each degree J ∈ N and selecting the polynomial that
minimises a cross-validation error (computed by partitioning D0 into D0,0∪D0,1, as described
in the main text). Since it is impossible to consider all polynomial degrees, a simple strategy
is to consider an increasing sequence J = 1, 2, 3, . . . and stop at the point where the cross-
validation error for J = l + 1 is greater than that for J = l; i.e. stop when we begin to
“over-fit”, in order to maintain low predictive error.

Choosing the polynomial coefficients θ: Following Mira et al. (2013) we note that
optimal polynomial coefficients θ are given by

θ = −VX [m(X)]−1EX [f(X)m(X)]

and so we approximate these coefficients by plugging in the sample estimate

1

m

m�

i=1

f(xi)m(xi)

for the expectation EX [f(X)m(X)] and

1

m

m�

i=1

(m(xi)−m)(m(xi)−m)T , m =
1

m

m�

j=1

m(xj)

for the variance VX [m(X)].

Comments on the extended ZV approach: There are several ways in which the exten-
sion of ZV control variates described above is less elegant compared to the proposed control
functionals: (i) The use of cross-validation to elicit J is essential to ensure super-root-n
convergence, whereas for control functionals it was merely an optional tool that can be used

7



−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90 100
Num Samples m 

Modified ZV Control Variates

E
st

im
a

to
r 

D
is

tr
ib

u
tio

n

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90 100
Num Samples m

Control Functionals

E
st

im
a

to
r 

D
is

tr
ib

u
tio

n

Figure S3: A comparison between modified ZV and control functionals, based on a synthetic
example. Here we display the empirical sampling distribution of Monte Carlo estimators,
based on n samples and 100 independent realisations.

to improve on a default rate that is already super-root-n. (ii) We are required to fit many
different polynomial approximations, indexed by J ∈ N, whereas control functionals can
be implemented based on just one functional approximation. (Computational time here is
typically not the bottle-neck in applications, but there is nevertheless a cost associated with
increased coding effort. Indeed, coding Eqns. 3-9 in the general case is non-trivial.) (iii)
Control functionals are flexible, in the sense that the kernel function k0 can be chosen to
enforce a pre-specified level of smoothness and, in this way, approximation error rates can be
optimised. In contrast, ZV control variates are only based on polynomials cannot be made
“more or less smooth”. This will result in sub-optimal rates for functional approximation
in the case of general f , for example when f is very rough then polynomial approximations
will converge slowly.

For the remainder we present an empirical comparison of the two approaches. It will
be shown that the performance of this extended ZV scheme is far inferior to the control
functionals that we are proposing.

Empirical comparison: We implemented the extended ZV control variates as described
above and compared their performance to our proposed control functional approach. Our
study focuses on the illustrative synthetic example from the main text in dimension d = 1;
i.e.

f(X) = sin(πX), X ∼ N(0, 1),

based on n = 2m independent samples from π, split as D0 = {xi}
m
i=1, D1 = {xi}

2m
i=m+1. (We

chose dimension d = 1 to reduce the coding effort relative to the case of general d in Eqns.
3-9; for control functionals there is very little coding effort required for the case of general
d.) For experiments we considered m ∈ {10, 20, . . . , 100}. For ZV we performed 10 rounds of
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Figure S4: Synthetic example; extrapolation from the fitted ZV model based on a degree
J = 6 polynomial. Here we evaluate the fitted model at locations sampled from π, minicking
the evaluation of the actual estimator.

cross-validation in order to select an appropriate polynomial degree J , in each case splitting
the training samples D0 into two subsets D0,0, D0,1 of equal size. For control functionals we
used the single split of the samples defined by D0 ∪D1; this ensures fairness of comparison.
All experiments were repeated 10 times and the same datasets were used to assess each
estimator.

Results are presented in Fig. S3. Firstly, we note that performance does not seem to
improve over standard ZV control variates (cf. results in the main text). Closer investigation
revealed that low polynomial degree (e.g. J = 1, 2, 3) almost always achieved the best
performance in the cross-validation sense and was automatically chosen for estimation. Since
the main text results are based on J = 2, this explains the observed similarity between the
sets of results. Secondly, it is interesting to ask why low-degree polynomials are optimal
in this objective, cross-validated sense. Fig. S4 plots the ZV surrogate function f̃(x) =
f(x) + θTm(x), for a higher-degree polynomial J = 6, at the values D1 that will be used
for computing the estimate. It is clearly seen that polynomial approximations extrapolate
extremely poorly as the degree J of the polynomial increases; in Fig. S4 we see that the
surrogate function f̃ “blows up” at values of x ∈ D1 that were outside [−2, 2].

We conclude that, whilst polynomial approximations have been shown to be useful in
many practical applications (e.g. Mira et al., 2013; Friel et al., 2015; Oates et al., 2016), they
are not well-suited to the development of control functionals with super-root-n convergence.
The kernel version that we propose is much more stable when it comes to extrapolation of
the surrogate function.
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.6 Marginalisation in hierarchical models: RQMC

We investigated whether control functionals can confer gains when employed alongside
(R)QMC techniques. Since (R)QMC is a sampling method, it is in a sense orthogonal to
post-hoc techniques and it is interesting to investigate whether a combined approach achieves
superior estimation performance. Note, however, that samples from (R)QMC are not inde-
pendent and thus the theoretical framework that we described does not directly apply -
this motivates the empirical investigation below. Specifically, we focus on a RQMC Halton
scheme with scrambling that has been shown to achieve O(n−3/2+�) root mean square error
for any � > 0 (Owen, 1997). Results in Fig. S5 show that the combined approach of CF +
RQMC achieves lower-variance estimation compared to RQMC alone.
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Figure S5: Exploring the use of randomised quasi Monte Carlo (RQMC) with control func-
tionals. [Here we display the sampling standard deviation of Monte Carlo estimators for the
posterior predictive mean E[Y∗|y] in the SARCOS robot arm example, computed over 10
independent realisations. Each point, representing one Monte Carlo integration problem, is
represented by a cross.
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.7 Non-linear ODE models

We consider first-order non-linear dynamical systems of the form

dx

ds
= F (x, s;θ), x(0) = x0 (10)

where x0 ∈ Rp is assumed known, p < ∞, and F : Rp × [0,∞) → Rp is non-linear. We
assume that only a subset of the state variables are observed under noise, so that x = [xa,xb]
and y is a d× n matrix of observations of the coordinates xa. Write s1 < s2 < · · · < sn for
the times at which observations are obtained, such that y(sj) = y•,j where y•,j is the jth
column of the data matrix y. We consider a Gaussian observation process with likelihood

p(y|θ,x0, σ) =
n�

j=1

N (y(sj)|xa(sj;θ,x0), σ
2Id×d)

where xa(sj;θ,x0) denotes the deterministic solution of the system in Eqn. 10 and σ > 0 is
assumed known. The gradient function in this case is

ui(θ) = ∇θi log p(θ) +
t

σ2

n�

j=1

Si
j,1:d(y(sj)− xa(sj;θ,x0)) (11)

where Si is a matrix of sensitivities with entries Si
j,k = ∂xk

∂θi
(sj). Note that in Eqn. 11, Sk

j,k

ranges over indices 1 ≤ k ≤ d corresponding only to the observed variables. In general
the sensitivities Si will be unavailable in closed form, but may be computed numerically
by either employing adjoint schemes or by augmenting the system of ordinary differential
equations, as

Ṡ
i
j,k =

∂Fk

∂θi
+

p�

l=1

∂Fk

∂xl
S
i
j,l

where ∂xk
∂θi

= 0 at s = 0. Indeed, these sensitivities are already computed when differential-
geometric sampling schemes are employed, so that the evaluation of Eqn. 11 incurs negligible
additional computational cost (Girolami and Calderhead, 2011; Papamarkou et al., 2014).

The method is illustrated on the van der Pol oscillator (van der Pol, 1926), a non-
conservative oscillator with non-linear damping that has classical modelling applications in
fields ranging from neuroscience (FitzHugh, 1961) to seismology (Cartwright et al., 1999).
Here a position x(s) ∈ R evolves in time s according to the second order differential equation

d2x

dt2
− θ(1− x

2)
dx

dt
+ x = 0

where θ ∈ R is an unknown parameter indicating the non-linearity and the strength of the
damping. Letting x1 := x and x2 := dx/dt we can formulate the oscillator as the first-order
system

F (x, s; θ) =

�
x2

θ(1− x2
1)x2 − x1

11



where only the first component x1 is observed. This system was solved numerically using
θ = 1, x0 = [0, 2]. Observations were made once every time unit, up to 10 units, and
Gaussian measurement noise of standard deviation σ = 0.1 was added. A log-normal prior
was placed on θ such that log(θ) ∼ N(0, 0.25).
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.8 Pseudocode for control functionals

As a convenient shorthand, write ui = u(xi) = ∇x log π(xi) and (f)i = f(xi) for the
cached values of the gradient u(x) and the integrand f(x) respectively. The first pseudocode
description that we present is for the simplest formulation of our estimator, identical to BMC
based in the space H+:

Algorithm 1 CF estimator (simplified)

Require: {xi}
n
i=1 ⊂ Rd×1, {ui}

n
i=1 ∈ Rd×1, f ∈ Rn×1, λ > 0

(K)i,j ← k0(xi,xj) for i = 1, . . . , n and j = 1, . . . , n
µ̂ ← (1 + 1

T (K + λnI)−1
1)−1

1
T (K + λnI)−1f

In this simple version of the sample splitting estimator that we consider below, one split
S of the samples D is used, corresponding to D0 = {xi}

m
i=1, D1 = {xi}

n
i=m+1:

Algorithm 2 CF estimator

Require: {xi}
n
i=1 ⊂ Rd×1, {ui}

n
i=1 ∈ Rd×1, f ∈ Rn×1, λ > 0

(f0)i ← (f)i for i = 1, . . . ,m
(f1)i ← (f)m+i for i = 1, . . . , n−m

(K0)i,j ← k0(xi,xj) for i = 1, . . . ,m and j = 1, . . . ,m
(K1,0)i,j ← k0(xm+i,xj) for i = 1, . . . , n−m and j = 1, . . . ,m
f̂1 ← K1,0(K0+λmI)−1f0+(1+1

T (K0+λmI)−1
1)−1(1−K1,0(K0+λmI)−1

1)(1T (K0+
λmI)−1f0)
µ̂ ← (n−m)−1

1
T (f1 − f̂1) + (1 + 1

T (K0 + λmI)−1
1)−1

1
T (K0 + λmI)−1f0

Now in this multi-splitting version we consider R different splits S of the samples D,
corresponding to D0 = {xS(i)}

m
i=1, D1 = {xi}

n−m
i=Sc(i). Here a split S is a subset of {1, 2, . . . , n}

containing m distinct elements. The members of S are themselves indexed and we denote
this by S = {S(1), . . . , S(m)}. The complement Sc is defined to be {1, 2, . . . , n} \ S and we
again index Sc = {Sc(1), . . . , Sc(n −m)}. In addition, r ∈ (0, 1) is a user-defined constant
that we often take to be r = 1/2 in practice.
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Algorithm 3 CF estimator + multi-splitting

Require: D = {xi}
n
i=1 ⊂ Rd×1, {ui}

n
i=1 ∈ Rd×1, f ∈ Rn×1, λ > 0

µ̂ ← 0
for r = 1,. . . ,R do

S ← random subset of {1, . . . , n} of size m ≈ rn.
(f0)i ← (f)S(i) for i = 1, . . . ,m�

(f1)i ← (f)Sc(i) for i = 1, . . . ,m−m�

(K0)i,j ← k0(xS(i),xS(j)) for i = 1, . . . ,m and j = 1, . . . ,m
(K1,0)i,j ← k0(xSc(i),xS(j)) for i = 1, . . . , n−m and j = 1, . . . ,m

f̂1 ← K1,0(K0+λmI)−1f0+(1+1
T (K0+λmI)−1

1)−1(1−K1,0(K0+λmI)−1
1)(1T (K0+

λmI)−1f0)
µ̂ ← µ̂+R−1[(n−m)−1

1
T (f1 − f̂1) + (1 + 1

T (K0 + λmI)−1
1)−1

1
T (K0 + λmI)−1f0]

end for

Finally, in this most general version of the algorithm, samples D are partitioned a priori
as D0 ∪D1 and we are interested in optimising over parameters θi ∈ Θ that specify the base
kernel k(x,x�;θ). We consider T different candidate values for these parameters and use
cross-validation to select an optimal set, indexed by t∗ ∈ {1, 2, . . . , T}:
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Algorithm 4 CF estimator + multi-splitting + cross-validation

Require: D = {xi}
n
i=1 ⊂ Rd×1, {ui}

n
i=1 ∈ Rd×1, f0 ∈ Rm×1, f1 ∈ Rn−m×1, {θi}

T
i=1 ⊂ Θ,

λ > 0
µ̂ ← 0
for r = 1,. . . ,R do

S0 ← random subset of {1, . . . , n} of size m ≈ rn.
(f0)i ← (f)S0(i) for i = 1, . . . ,m�

(f1)i ← (f)Sc
0(i)

for i = 1, . . . ,m−m�

for t = 1,. . . ,T do

S ← random subset of {1, . . . ,m} of size m� ≈ rm.
(f0,0)i ← (f0)S(i) for i = 1, . . . ,m�

(f0,1)i ← (f0)Sc(i) for i = 1, . . . ,m−m�

(K0,0)i,j ← k0(xS(i),xS(j);θt) for i = 1, . . . ,m� and j = 1, . . . ,m�

(K0,1,0)i,j ← k0(xSc(i),xS(j);θt) for i = 1, . . . ,m−m� and j = 1, . . . ,m�

f̂0,1 ← K0,1,0(K0,0 + λm�I)−1f0,0 + (1 + 1
T (K0,0 + λm�I)−1

1)−1(1 − K0,1,0(K0,0 +
λm�I)−1

1)(1T (K0,0 + λm�I)−1f0,0)
error(t) ← error(t) +�f0,1 − f̂0,1�2

end for

t∗ ← argmint=1,...,T error(t)
(K0)i,j ← k0(xS0(i),xS0(j);θt∗) for i = 1, . . . ,m and j = 1, . . . ,m
(K1,0)i,j ← k0(xSc

0(i)
,xS0(j);θt∗) for i = 1, . . . , n−m and j = 1, . . . ,m

f̂1 ← K1,0(K0+λmI)−1f0+(1+1
T (K0+λmI)−1

1)−1(1−K1,0(K0+λmI)−1
1)(1T (K0+

λmI)−1f0)
µ̂ ← µ̂+R−1[(n−m)−1

1
T (f1 − f̂1) + (1 + 1

T (K0 + λmI)−1
1)−1

1
T (K0 + λmI)−1f0]

end for
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