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Motivation Simulation Based Inference

I Monte Carlo method employs samples from p(θ) to obtain estimateZ
φ(θ)p(θ)dθ =

1
N

X
n
φ(θn) +O(N−

1
2 )

I Draw θn from ergodic Markov process with stationary distribution p(θ)

I Construct process in two parts

I Propose a move θ → θ′ with probability pp(θ′|θ)

I accept or reject proposal with probability

pa(θ
′|θ) = min

»
1,

p(θ′)pp(θ|θ′)
p(θ)pp(θ′|θ)

–

I Efficiency dependent on pp(θ′|θ) defining proposal mechanism

I Success of MCMC reliant upon appropriate proposal design
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Adaptive Proposal Distributions - Exploit Discretised Diffusion

I For θ ∈ RD with density p(θ), L(θ) ≡ log p(θ), define Langevin diffusion

dθ(t) =
1
2
∇θL(θ(t))dt + db(t)

I First order Euler-Maruyama discrete integration of diffusion

θ(τ + ε) = θ(τ) +
ε2

2
∇θL(θ(τ)) + εz(τ)

I Proposal
pp(θ′|θ) = N (θ′|µ(θ, ε), ε2I) with µ(θ, ε) = θ +

ε2

2
∇θL(θ)

I Acceptance probability to correct for bias

pa(θ′|θ) = min
»
1,

p(θ′)pp(θ|θ′)
p(θ)pp(θ′|θ)

–
I Isotropic diffusion inefficient, employ pre-conditioning

θ′ = θ + ε2M∇θL(θ)/2 + ε
√

Mz

I How to set M systematically? Tuning in transient & stationary phases
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Geometric Concepts in MCMC

I Rao, 1945; Jeffreys, 1948, to first orderZ
p(y; θ + δθ) log

p(y; θ + δθ)

p(y; θ)
dθ ≈ δθTG(θ)δθ

where

G(θ) = Ey|θ

(
∇θp(y; θ)

p(y; θ)

∇θp(y; θ)

p(y; θ)

T
)

I Fisher Information G(θ) is p.d. metric defining a Riemann manifold
I Non-Euclidean geometry for probabilities - distances, metrics, invariants,

curvature, geodesics
I Asymptotic statistical analysis. Amari, 1981, 85, 90; Murray & Rice,

1993; Critchley et al, 1993; Kass, 1989; Efron, 1975; Dawid, 1975;
Lauritsen, 1989

I Statistical shape analysis Kent et al, 1996; Dryden & Mardia, 1998

I Can geometric structure be employed in MCMC methodology?
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Geometric Concepts in MCMC

I Tangent space - local metric defined by δθTG(θ)δθ =
P

k,l gklδθkδθl

I Christoffel symbols - characterise connection on curved manifold

Γi
kl =

1
2

X
m

g im
„
∂gmk

∂θl +
∂gml

∂θk −
∂gkl

∂θm

«
I Geodesics - shortest path between two points on manifold

d2θi

dt2 +
X
k,l

Γi
kl

dθk

dt
dθl

dt
= 0
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Illustration of Geometric Concepts

I Consider Normal density p(x |µ, σ) = Nx (µ, σ)

I Local inner product on tangent space defined by metric tensor, i.e.
δθTG(θ)δθ, where θ = (µ, σ)T

I Metric is Fisher Information

G(µ, σ) =

»
σ−2 0

0 2σ−2

–

I Inner-product σ−2(δµ2 + 2δσ2) so densities N (0, 1) & N (1, 1) further
apart than the densities N (0, 2) & N (1, 2) - distance non-Euclidean

I Metric tensor for univariate Normal defines a Hyperbolic Space
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Langevin Diffusion on Riemannian manifold

I Discretised Langevin diffusion on manifold defines proposal mechanism

θ′d = θd +
ε2

2

“
G−1(θ)∇θL(θ)

”
d
− ε2

DX
i,j

G(θ)−1
ij Γd

ij + ε
“p

G−1(θ)z
”

d

I Manifold with constant curvature then proposal mechanism reduces to

θ′ = θ +
ε2

2
G−1(θ)∇θL(θ) + ε

p
G−1(θ)z

I MALA proposal with preconditioning

θ′ = θ +
ε2

2
M∇θL(θ) + ε

√
Mz

I Proposal and acceptance probability

pp(θ′|θ) = N (θ′|µ(θ, ε), ε2G(θ))

pa(θ′|θ) = min
»
1,

p(θ′)pp(θ|θ′)
p(θ)pp(θ′|θ)

–
I Proposal mechanism diffuses approximately along the manifold
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Geodesic flow as proposal mechanism

I Desirable that proposals follow direct path on manifold - geodesics

I Define geodesic flow on manifold by solving

d2θi

dt2 +
X
k,l

Γi
kl

dθk

dt
dθl

dt
= 0

I How can this be exploited in the design of a transition operator?

I Need slight detour - first define log-density under model as L(θ)

I Introduce auxiliary variable p ∼ N (0,G(θ))

I Negative joint log density is

H(θ,p) = −L(θ) +
1
2

log 2πD|G(θ)|+ 1
2

pTG(θ)−1p
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Riemannian Hamiltonian Monte Carlo
I Negative joint log-density ≡ Hamiltonian defined on Riemann manifold

H(θ,p) = −L(θ) +
1
2

log 2πD|G(θ)|| {z }
Potential Energy

+
1
2

pTG(θ)−1p| {z }
Kinetic Energy

I Marginal density follows as required

p(θ) ∝ exp {L(θ)}p
2πD|G(θ)|

Z
exp


−1

2
pTG(θ)−1p

ff
dp = exp {L(θ)}

I Obtain samples from marginal p(θ) using Gibbs sampler for p(θ,p)

pn+1|θn ∼ N (0,G(θn))

θn+1|pn+1 ∼ p(θn+1|pn+1)

I Employ Hamiltonian dynamics to propose samples for p(θn+1|pn+1),
Duane et al, 1987; Neal, 2010.

dθ

dt
=

∂

∂p
H(θ,p)

dp
dt

= − ∂

∂θ
H(θ,p)
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Riemannian Manifold Hamiltonian Monte Carlo

I Consider the Hamiltonian H̃(θ,p) = 1
2 pTG̃(θ)−1p

I Hamiltonians with only a quadratic kinetic energy term exactly describe
geodesic flow on the coordinate space θ with metric G̃

I However our Hamiltonian is H(θ,p) = V (θ) + 1
2 pTG(θ)−1p

I If we define G̃(θ) = G(θ)× (h − V (θ)), where h is a constant H(θ,p)

I Then the Maupertuis principle tells us that the Hamiltonian flow for
H(θ,p) and H̃(θ,p) are equivalent along energy level h

I The solution of

dθ

dt
=

∂

∂p
H(θ,p)

dp
dt

= − ∂

∂θ
H(θ,p)

is therefore equivalent to the solution of

d2θi

dt2 +
X
k,l

Γ̃i
kl

dθk

dt
dθl

dt
= 0

I RMHMC proposals are along the manifold geodesics
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Warped Bivariate Gaussian
I p(w1,w2|y, σx , σy ) ∝

QN
n=1N (yn|w1 + w2

2 , σ
2
y )N (w1,w2|0, σ2
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Gaussian Mixture Model

I Univariate finite mixture model

p(xi |θ) =
KX

k=1

πkN (xi |µk , σ
2
k )

I FI based metric tensor non-analytic - employ empirical FI

G(θ) =
1
N

ST S − 1
N2 s̄s̄T −−−−→

N→∞
cov (∇θL(θ)) = I(θ)

∂G(θ)

∂θd
=

1
N

 
∂ST

∂θd
S + ST ∂S

∂θd

!
− 1

N2

„
∂s̄
∂θd

s̄T + s̄
∂s̄T

∂θd

«
with score matrix S with elements Si,d = ∂ log p(xi |θ)

∂θd
and s̄ =

PN
i=1 ST

i,·
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Gaussian Mixture Model
I Univariate finite mixture model
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Figure: Comparison of MALA (left), mMALA (middle) and simplified mMALA (right)
convergence paths and autocorrelation plots. Autocorrelation plots are from the
stationary chains, i.e. once the chains have converged to the stationary distribution.
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Figure: Comparison of HMC (left), RMHMC (middle) and GIBBS (right) convergence
paths and autocorrelation plots. Autocorrelation plots are from the stationary chains,
i.e. once the chains have converged to the stationary distribution.



Log-Gaussian Cox Point Process with Latent Field

I The joint density for Poisson counts and latent Gaussian field

p(y, x|µ, σ, β) ∝
Y64

i,j
exp{yi,jxi,j−m exp(xi,j )} exp(−(x−µ1)TΣ−1

θ (x−µ1)/2)

I Metric tensors

G(θ)i,j =
1
2

trace
„

Σ−1
θ

∂Σθ

∂θi
Σ−1

θ

∂Σθ

∂θj

«
G(x) = Λ + Σ−1

θ

where Λ is diagonal with elements m exp(µ+ (Σθ)i,i )

I Latent field metric tensor defining flat manifold is 4096× 4096, O(N3)
obtained from parameter conditional

I MALA requires transformation of latent field to sample - with separate
tuning in transient and stationary phases of Markov chain

I Manifold methods requires no pilot tuning or additional transformations
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RMHMC for Log-Gaussian Cox Point Processes

Table: Sampling the latent variables of a Log-Gaussian Cox Process - Comparison of
sampling methods

Method Time ESS (Min, Med, Max) s/Min ESS Rel. Speed
MALA (Transient) 31,577 (3, 8, 50) 10,605 ×1
MALA (Stationary) 31,118 (4, 16, 80) 7836 ×1.35

mMALA 634 (26, 84, 174) 24.1 ×440
RMHMC 2936 (1951, 4545, 5000) 1.5 ×7070



Conclusion and Discussion

I Geometry of statistical models harnessed in Monte Carlo methods

I Diffusions that respect structure and curvature of space - Manifold MALA

I Geodesic flows on model manifold - RMHMC - generalisation of HMC

I Assessed on correlated & high-dimensional latent variable models

I Promising capability of methodology

I Ongoing development

I Potential bottleneck at metric tensor and Christoffel symbols

I Theoretical analysis of convergence

I Investigate alternative manifold structures

I Design and effect of metric

I Optimality of Hamiltonian flows as local geodesics

I Alternative transition kernels

I No silver bullet or cure all - new powerful methodology for MC toolkit
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