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Statistics with deterministic numerical simulations

If we have a physical model u(θ) requiring the solution of differential
equations, we form an approximation,

‖u(θ)− Uh(θ)‖ ≤ ψ(h)→ 0 as h→ 0.

Applied in forward UQ:

Eθ[Φ(u(θ))] ≈ Eθ[Φ(Uh(θ))],

or a Bayesian inverse problem:

µ(θ) ∝ L(u(θ)|d)p(θ) ≈ L(Uh(θ)|d)p(θ).

This neglects uncertainty in the solver Uh(θ)! Our analysis will be
over-confident about the solution u.
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Bayesian posterior with deterministic solver
Posterior is over-confident at finite h values
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Statistics with random numerical simulations

Instead, form a randomized solver,

Eω‖u(θ)− Uh,ω(θ)‖ ≤ ψ(h)→ 0 as h→ 0.

Applied in forward uncertainty quantification:

Eθ[Φ(u(θ))] ≈ Eθ,ω[Φ(Uh,ω(θ))],

or a Bayesian inverse problem:

µ(θ) ∝ L(u(θ)|d)p(θ) ≈
∫
L(Uh,ω(θ)|d)p(θ)dω.

Allow consistent statistical analysis across multiple resolutions
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Lorenz with Classical 4th order Runge-Kutta
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Lorenz with Randomized 4th order Runge-Kutta
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Lorenz movie
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Overview

I Our aim is to quantify uncertainty in existing solvers for
combination with statistical methods

I Describe uncertainty as a measure over solutions that contracts to
the true solution

I Construct Monte Carlo samples by perturbing the discretization
with random Gaussian fields

I Developed for both ODE and PDE solvers

Disclaimers:
I Not a route to faster converging solvers or eliminating bias
I Assume that analytic solution u(θ) is our objective
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Existing approaches to statistical error models

Deterministic error indicators are well developed, e.g., an h refinement
indicator

e(t) = Uh(t)− Uh/2(t)

suggest measure
µ(t) = N (Uh(t), e(t)2)

Pointwise i.i.d. Gaussian error is too simplistic; correlations impact later
analysis

Related work on statistical treatment of discretization error
I O’Hagan (1992); Skilling (1991); Diaconis (1988)
I Chkrebtii, Campbell, Girolami, Calderhead (2014)
I Schober, Duvenaud, Hennig (2014)
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Randomized ODE solvers

Consider the ODE:
du
dt = f (u), u(0) = u0.

Integral equation
Choose a fixed step size h. For uk = u(kh). For t ∈ [tk , tk+1]:

u(t) = uk +
∫ t

tk
f
(
u(s)

)
ds

Some approximation is required to create a numeric method.
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Randomized ODE solvers (cont)

One-step numerical method
For Uk ≈ u(kh):

Uk+1 = Ψh(Uk), U0 = u0.

Continuous approximation:

U(t) ≈ Ψt−tk (Uk)

Randomized numerical method
Assume the flow map is perturbed by a Gaussian process, ξk(·) defined on
[0, h], where ξk(·) = 0. This gives approximation U(t) for t ∈ [tk , tk+1]:

U(t) = Ψt−tk (Uk) + ξk(t − tk),
Uk+1 = Ψh(Uk) + ξk(h).
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Illustration of randomized ODE step

Standard basis
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Standard Euler

Perturbed Euler

Randomized solver is locally Gaussian, but globally non-Gaussian
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Assumptions

Assumption 1
Let there exist K > 0, p ≥ 1 such that, for all t ∈ [0, h],

E
∣∣∣ξ(t)ξ(t)T

∣∣∣2
F
≤ Kt2p+1.

Furthermore, assume there is a constant σ, independent of h, such that

E[ξ(h)ξ(h)T ] = σh2p+1I.

Assumption 2
The function f and a sufficient number of its derivatives are bounded
uniformly in Rn in order to ensure that f is globally Lipschitz and that the
numerical flow-map Ψh has uniform local truncation error of order q + 1
with respect to the true flow-map Φh:

sup
u∈Rn
|Ψt(u)− Φt(u)| ≤ Ktq+1.
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Convergence result

Theorem
Under Assumptions 1 and 2 it follows that there is K > 0 such that

sup
0≤kh≤T

E|uk − Uk |2 ≤ Kh2 min{p,q}.

Furthermore
sup

0≤t≤T
E|u(t)− U(t)| ≤ Khmin{p,q}.

Scaling of Noise
I Optimal scaling of noise is p = q.
I Then deterministic rate of convergence is unaffected.
I But maximal noise is added to the system.
I Fit constant σ to an error estimator.
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Convergence of random solutions

Draws from the random solver for fixed σ
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Backward error analysis

Modified (Stochastic Differential) Equation

duh

dt = f (uh) + hq
q∑

l=0
h`f`(uh) +

√
σh2q dW

dt , uh(0) = u0

Theorem
Under Assumptions 1 and 2, for Φ a C∞ function with all derivatives
bounded uniformly on Rn, there is a choice of {f`}q`=0 such that∣∣∣Φ(u(T )

)
− EΦ

(
Uk)

)∣∣∣ ≤ Khq, kh = T .

and ∣∣∣EΦ
(
uh(T )

)
− EΦ

(
Uk)

)∣∣∣ ≤ Kh2q+1, kh = T .
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Impact of the scale parameter σ

Draws from the random solver for fixed h = 0.1
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Choosing scale of random perturbations

The scale σ is problem dependent, choose it to match the classical error
indicator, by sampling

p(σ) ∝ exp
[
−d

(
N (E[Uh

σ ],V[Uh
σ ]),N (Uh(t), e(t)2)

)]
,

or optimizing

min
σ

d
(
N (E[Uh

σ ],V[Uh
σ ]),N (Uh(t), e(t)2)

)
.

The Bhattacharyya distance works well

d
(
N (µp, σ

2
p),N (µq, σ

2
q)
)

= 1
4

(
ln 1

4

(
σ2

p
σ2

q
+
σ2

q
σ2

p
+ 2

))
+1

4

(
(µp − µq)2

σ2
p + σ2

q

)
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Density of scale parameter in FitzHugh-Nagumo
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Calibrated difference from deterministic solution
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Bayesian posterior

For a true ODE problem,

du
dt = f (u, θ), u(0) = u0,

construct the true posterior,

P(θ|d) ∝ π(θ)L(u(t, θ)|d).

Given a numerical approximation, Uh(t), construct approximate posterior,

≈ Ph(θ|d) ∝ π(θ)L(Uh(t, θ)|d).

Typically convergent, in the sense that [Cotter, Dashti, Stuart]

dHell (Ph(θ|d),P(θ|d))→ 0 as h→ 0
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Modifying the inference problem

Deterministic solver

Ph(θ|d) ∝ π(θ)L(Uh(t, θ)|d).

Deterministic error indicator

Ph(θ|d) ∝ π(θ)
∫
L(Uh(t) + ξ(t)|d)dξ(t)

ξ(t) ∼ GP(0, e(t)2), either i.i.d. or AR(1)

Randomized solver

Ph(θ|d) ∝ π(θ)
∫
L(Uh

σ(t|ξ)|d)dξ

Apply noisy pseudomarginal MCMC to sample integrals
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Repressilator inference
Protein concentration mRNA
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Repressilator random integrals
Inference uses 2nd order Runge-Kutta
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Repressilator posterior with deterministic solver
Posterior is over-confident at finite h values
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Repressilator posterior with error indicator and i.i.d.
Uncorrelated model error has little impact
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Repressilator posterior with error indicator and AR(1)
Simple correlation model has little impact
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Repressilator posterior with random solver
Posterior still contains bias, but posterior width reflects error
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Summary of random ODE solvers

1. Insert uncertainty into discretisation with local Gaussian processes
2. Prove convergence of random solver and backwards error analysis
3. Scale noise in practice by matching error indicators
4. Demonstrate improved results on inference
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Randomizing standard PDE solvers

Weak Form

u ∈ V : a(u, v) = r(v), ∀v ∈ V.

Galerkin Method

uh ∈ Vh : a(uh, v) = r(v), ∀v ∈ Vh.

Then
Vh = span{Φj = Φs

j}Jj=1.

Randomized Galerkin Method
Vh comprises small randomized perturbations of the standard Galerkin
method:

Vh = span{Φj = Φs
j + Φr

j}Jj=1.
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Illustration of randomized PDE basis

Standard basis
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Standard hat basis

Randomized hat basis

I For nodal points xk , Φr
j (xk) = 0.

I Choose supp Φs
j = supp Φr

j to maintain sparsity
I Greater flexibility in choosing properties of random field
I Randomness generated in advance, solver step is unaffected
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Assumptions

Assumption 1
The {Φr

j}Jj=1 are independent, mean zero, Gaussian random fields, with
the same support as the {Φs

j}, and satisfying

Φr
j (xk) = 0,

J∑
j=1

E‖Φr
j‖2a ≤ Ch2q.

Assumption 2
The true solution u of problem (30) is in L∞(D). Furthermore the
standard deterministic interpolant of the true solution, defined by

v s :=
J∑

j=1
u(xj)Φs

j ,

satisfies ‖u − v s‖a ≤ Chp.
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Convergence result

Theorem
Under Assumptions 1 and 2 it follows that the random approximation Uh

satisfies
E‖u − Uh‖2a ≤ Ch2 min{p,q}.

Corollary
Consider the Poisson equation with Dirichlet boundary conditions and a
random perturbation of the piecewise linear FEM approximation, with
p = q = 1. Under Assumptions 1 and 2 it follows that the random
approximation Uh satisfies

E‖u − Uh‖L2 ≤ Ch2.
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Elliptic PDE inverse problem

Standard elliptic inversion problem:

∇ · (κ(x)∇u(x)) = 4x

u(0) = 0, u(1) = 2

Data with small i.i.d. Gaussian error
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Elliptic inference with standard solver
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Elliptic inference with random solver
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2D Elliptic problem

Standard 2D elliptic equation:

∇ · (κ(x , y)∇u(x , y)) = f (x , y)

Solved on a 30× 30 grid. Perturbation fields are N (0, (−4)−2)
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Perturbations in random solutions

Top PCA modes of perturbation are shown
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Shallow water equation solver

I Vortex shedding on a global shallow water model
I Advanced mimetic finite element scheme ≈ 10,000 DOF
I Introduced perturbations to ODE step and roughly calibrated scale

Solver due to Thuburn, Cotter (2014)
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Perturbations to shallow water solver

Top PCA modes of perturbation are shown
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Contributions

I Our aim is to quantify uncertainty in existing solvers for
combination with statistical methods

I Describe uncertainty as a measure over solutions that contracts to
the true solution

I Construct Monte Carlo samples by perturbing the discretization
with random Gaussian fields

I Developed for both ODE and PDE solvers
I Simple construction can be adapted to many useful solvers
I Demonstrated more consistent statistical analysis using randomized

solvers
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Future work

I Study other classes of PDEs and backwards error analysis
I Extend to other types of model error (e.g., dimension reduction)
I Apply to other problem classes, e.g., Stochastic Differential Equations

I Study rates of convergence of forward UQ and Bayesian posteriors
I Computational issues surrounding pseudomarginal posteriors
I Leverage efficient statistical methods, e.g., multilevel sampling
I Extensions to Bayesian inference on infinite dimensional spaces

I Apply to large, real-world applications, such as shallow water
equations
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